Physics for Scientists and Engineers: A Strategic Approach with Modern Physics (3rd Edition)

Published by Pearson
ISBN 10: 0321740904
ISBN 13: 978-0-32174-090-8

Chapter 19 - Heat Engines and Refrigerators - Exercises and Problems - Page 553: 59

Answer

See the detailed answer below.

Work Step by Step

First of all, we need to find the number of moles of the helium gas. $$n=\dfrac{m}{M}$$ where $m$ is the mass of the sample and $M$ is the atomic mass of the atom. $$n=\dfrac{120\times 10^{-3}}{4}=\bf 0.03\;\rm mol$$ --- a) $\Rightarrow$ At point 1: the only unknown is the temperature, so $$T_1=\dfrac{P_1V_1}{nR}=\dfrac{(1\times 1.013\times 10^5)(1000\times 10^{-6})}{(0.03)(8.31)}$$ $$T_1=\color{red}{\bf 406}\;\rm K$$ $\Rightarrow$ At point 2: the only unknown is the temperature as well, so $$T_2=\dfrac{P_2V_2}{nR}=\dfrac{(5\times 1.013\times 10^5)(1000\times 10^{-6})}{(0.03)(8.31)}$$ $$T_2=\color{red}{\bf 2032}\;\rm K$$ $\Rightarrow$ At point 3: the only unknown is the volume. Noting that we know its temperature since the process from 2 to 3 is an isothermal process. $$V_3=\dfrac{nRT_3}{P_3}=\dfrac{(0.03)(8.31)(2032)}{(1\times 1.013\times 10^5) }$$ $$V_3=\color{red}{\bf 5000}\;\rm cm^3$$ ________________________________________________________ b) The engine's thermal efficiency is given by $$\eta=\dfrac{W_s}{Q_{in}}$$ Now we need to find the net work done during the whole three processes and the heat entered the system as well. $$W_s=(W_s)_{1\rightarrow2}+(W_s)_{2\rightarrow3}+(W_s)_{3\rightarrow1}$$ From 1 to 2, it is an isochoric process, so the work done is zero. $$W_s=0+\int_2^3PdV+P_1(\Delta V)_{3\rightarrow1}$$ $$W_s= nRT_2\ln\left[\dfrac{V_3}{V_2}\right]+P_1(V_1-V_3)$$ Plugging the known; $$W_s= (0.03)(8.31)(2032)\ln\left[\dfrac{5000}{1000}\right]+(1.013\times 10^5)(1000-5000)\times 10^{-6}$$ $$W_s=\color{blue}{\bf 410}\;\rm J$$ Now we need to find $Q_{in}$ In the first process, from 1 to 2: [Isochoric] $$Q_{1\rightarrow2}=nC_{\rm V}\Delta T=\frac{3}{2}nR(T_2-T_1)$$ $$Q_{1\rightarrow2}= \frac{3}{2}(0.03)(8.31)(2032-406)=\bf 608\;\rm J$$ In the second process, from 2 to 3:[Isothermal] $$Q_{2\rightarrow3}-(W_s)_{2\rightarrow3}=0$$ $$Q_{2\rightarrow3}=(W_s)_{2\rightarrow3}= nRT_2\ln\left[\dfrac{V_3}{V_2}\right]$$ $$Q_{2\rightarrow3}=(0.03)(8.31)(2032)\ln\left[\dfrac{5000}{1000}\right] =\bf 815\;\rm J$$ In the third process, from 3 to 1:[Isobaric] $$Q_{3\rightarrow1}=nC_{\rm P}\Delta T=\frac{5}{2}nR(T_1-T_3)$$ $$Q_{3\rightarrow1}= \frac{5}{2}(0.03)(8.31)(406-2032)=-1013\;\rm J$$ Hence, $$Q_{in}=Q_{1\rightarrow2}+Q_{2\rightarrow3}=608+815$$ $$Q_{in}=\color{blue}{\bf 1423}\;\rm J$$ Therefore, $$\eta=\dfrac{410}{1423}=\color{red}{\bf 0.29}$$ ________________________________________________________ c) The engine's maximum efficiency is given by $$\eta_{max}=1-\dfrac{T_C}{T_H}=1-\dfrac{406}{2032}=\color{red}{\bf 0.8}$$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.