Physics for Scientists and Engineers: A Strategic Approach with Modern Physics (3rd Edition)

Published by Pearson
ISBN 10: 0321740904
ISBN 13: 978-0-32174-090-8

Chapter 19 - Heat Engines and Refrigerators - Exercises and Problems - Page 552: 56

Answer

See the detailed answer below.

Work Step by Step

a) The volume at point 2 is on the given graph, $$V_2=\color{red}{\bf 1000}\;\rm cm^3$$ From 2 to 3, the gas undergoes an adiabatic process, so $$P_2V_2^\gamma=P_3V_3^\gamma$$ Hence, $$P_2=P_3\left[ \dfrac{V_3}{V_2}\right]^\gamma$$ For diatomic gas, we know that, $C_V=5R/2$ and $C_P=7R/2$, and hence, $\gamma=C_P/C_V=7/5$ $$P_2=(100)\left[ \dfrac{4000}{1000}\right]^\frac{7}{5}$$ $$P_2=\color{red}{\bf696.4}\;\rm kPa$$ From 1 to 2, the gas undergoes an isochoric process, so $$\dfrac{P_1}{T_1}=\dfrac{P_2}{T_2}$$ Hence, $$T_2=\dfrac{P_2T_1}{P_1}=\dfrac{(696.4)(300)}{400}$$ $$T_2=\color{red}{\bf 522.3}\;\rm K$$ ________________________________________________ b) First of all, we need to find the number of moles of the gas which is given by $$PV=nRT$$ $$n=\dfrac{P_1V_1}{RT_1}=\dfrac{(400\times 10^3)(1000\times 10^{-6})}{(8.31)(300)}$$ $$n=\color{green}{\bf 0.16045}\;\rm mol$$ $\bullet$ $\textbf{The first process 1$\rightarrow$2: [Isochoric] }$ $$W_{1\rightarrow 2}=P\Delta V=P(0)$$ $$W_{1\rightarrow 2}=\color{red}{\bf 0}\;\rm J$$ $$(\Delta E_{th})_{1\rightarrow 2}=\frac{5}{2}nR(T_2-T_1) $$ $$(\Delta E_{th})_{1\rightarrow 2}=\frac{5}{2}(0.16045)(8.31)(522.3-300) $$ $$(\Delta E_{th})_{1\rightarrow 2}=\color{red}{\bf 741}\;\rm J$$ $$Q_{1\rightarrow 2}=(\Delta E_{th})_{1\rightarrow 2}=\color{red}{\bf 741}\;\rm J$$ $\bullet \bullet$ $\textbf{The second process 2$\rightarrow$3: [Adiabtic] }$ $$Q_{2\rightarrow3}=\color{red}{\bf 0}\;\rm J$$ $$(\Delta E_{th})_{2\rightarrow3}=\frac{5}{2}nR(T_3-T_2) $$ $$(\Delta E_{th})_{2\rightarrow3}=\frac{5}{2}(0.16045)(8.31)(300-522.3) $$ $$(\Delta E_{th})_{2\rightarrow3}=\color{red}{\bf- 741}\;\rm J$$ And hence, $$(W_s)_{2\rightarrow3}=-(\Delta E_{th})_{2\rightarrow3}=-(-741)$$ $$(W_s)_{2\rightarrow3}=\color{red}{\bf 741}\;\rm J$$ $\bullet\bullet\bullet$ $\textbf{The third process 3$\rightarrow$1: [Isothermal] }$ $$(\Delta E_{th})_{3\rightarrow1}=\color{red}{\bf0}\;\rm J$$ $$(W_s)_{3\rightarrow1}=\int_3^1PdV=\int_3^1\dfrac{nRT}{V}dV\\ =nRT\int_3^1\dfrac{dV}{V}=nRT\ln\left[\dfrac{V_1}{V_3}\right]$$ $$(W_s)_{3\rightarrow1} =(0.16045)(8.31)(300)\ln\left[\dfrac{1000}{4000}\right]$$ $$(W_s)_{3\rightarrow1}=\color{red}{\bf -554.5}\;\rm J$$ And hence, $$Q_{3\rightarrow1}-(W_{s})_{3\rightarrow1}=0$$ $$Q_{3\rightarrow1}=(W_s)_{3\rightarrow1}=\color{red}{\bf -554.5}\;\rm J$$ \begin{array}{|c|c|c|c|} \hline & \Delta E_{th}\;{\rm (J)}& W_s\;{\rm (J)}&Q\;{\rm (J)}\\ \hline 1\rightarrow 2& 741& 0&741\\ \hline 2\rightarrow 3 & -741& 741&0\\ \hline 3\rightarrow1& 0& -554.5&-554.5 \\ \hline {\rm Sum}& 0 & \color{red}{186.5}&\\ \hline \end{array} ________________________________________________ c) The work done by this engine per cycle is 186.5 J, as we see in the table above. $$W_{\rm cycle}=\color{red}{\bf 186.5}\;\rm J$$ The thermal efficiency of the engine is given by $$\eta=\dfrac{W_{out}}{Q_{in}}$$ Plugging from the table above; $$\eta=\dfrac{186.5}{741}=\color{red}{\bf 0.25}$$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.