Physics for Scientists and Engineers: A Strategic Approach with Modern Physics (3rd Edition)

Published by Pearson
ISBN 10: 0321740904
ISBN 13: 978-0-32174-090-8

Chapter 19 - Heat Engines and Refrigerators - Exercises and Problems - Page 552: 53

Answer

See the detailed answer below.

Work Step by Step

First of all, we need to find the number of moles of the gas which is given by $$PV=nRT$$ $$n=\dfrac{P_1V_1}{RT_1}=\dfrac{(0.5\times 1.013\times 10^5)(10\times 10^{-6})}{(8.31)(20+273)}$$ $$n=\color{green}{\bf 2.08\times 10^{-4}}\;\rm mol$$ Now we need to find $T_2$ and $T_3$; $$T_2=\dfrac{P_2V_2}{nR}=\dfrac{(1.5\times 1.013\times 10^5)(40\times 10^{-6})}{(2.08\times 10^{-4})(8.31)}$$ $$T_2= \color{green}{\bf3516}\;\rm K$$ $$T_3=\dfrac{P_2V_2}{nR}=\dfrac{(0.5\times 1.013\times 10^5)(40\times 10^{-6})}{(2.08\times 10^{-4})(8.31)}$$ $$T_3= \color{green}{\bf 1172}\;\rm K$$ $\textbf{The first process 1$\rightarrow$2:}$ $$(W_s)_{1\rightarrow 2}=\rm \;Area\;under\;the \;({\it P-V})\;curve$$ $$(W_s)_{1\rightarrow 2}=\left[\frac{1}{2}(40-10)\times 10^{-6}(1.5-0.5)\times 1.013\times 10^5\right]+\left[(40-10)\times 10^{-6}(0.5\times 1.013\times 10^5)\right]$$ $$(W_s)_{1\rightarrow 2}=\color{red}{\bf 3.039}\;\rm J$$ $$(\Delta E_{th})_{1\rightarrow 2}=\frac{5}{2}nR(T_2-T_1) $$ $$(\Delta E_{th})_{1\rightarrow 2}=\frac{5}{2}(2.08\times 10^{-4})(8.31)(3516-[20+273]) $$ $$(\Delta E_{th})_{1\rightarrow 2}=\color{red}{\bf 13.93}\;\rm J$$ Hence, $$Q_{1\rightarrow2}=(\Delta E_{th})_{1\rightarrow 2}+(W_s)_{1\rightarrow 2}$$ $$Q_{1\rightarrow2}=13.93+3.039$$ $$Q_{1\rightarrow 2}=\color{red}{\bf 16.97}\;\rm J$$ $\textbf{The second process 2$\rightarrow$3:[Isochoric]}$ $$(W_s)_{2\rightarrow 3}=P\Delta V=P(0)=0$$ $$(W_s)_{2\rightarrow 3}=\color{red}{\bf 0}\;\rm J$$ Hence, $$(\Delta E_{th})_{2\rightarrow 3}=Q_{2\rightarrow3}=\frac{5}{2}nR(T_3-T_2) $$ $$(\Delta E_{th})_{2\rightarrow 3}=Q_{2\rightarrow3}=\frac{5}{2}(2.08\times 10^{-4})(8.31)(1172-3516) $$ $$(\Delta E_{th})_{2\rightarrow 3}=Q_{2\rightarrow3}=\color{red}{\bf -10.13}\;\rm J$$ $\textbf{The third process 3$\rightarrow$1:[Isobaric]}$ $$(W_s)_{3\rightarrow 1}=P\Delta V=P(V_1-V_3)$$ $$(W_s)_{3\rightarrow 1}=(0.5\times 1.013\times 10^5)(10-40)\times 10^{-6}$$ $$(W_s)_{3\rightarrow 1}=\color{red}{\bf -1.52}\;\rm J$$ $$(\Delta E_{th})_{3\rightarrow 1}=\frac{5}{2}nR(T_1-T_3) $$ $$(\Delta E_{th})_{3\rightarrow 1}=\frac{5}{2}(2.08\times 10^{-4})(8.31)([20+273]-1172) $$ $$(\Delta E_{th})_{3\rightarrow 1}=\color{red}{\bf-3.8}\;\rm J$$ $$Q_{3\rightarrow 1}=nC_{\rm P}(T_1-T_3)=\frac{7}{2}nR(T_1-T_3)$$ $$Q_{3\rightarrow 1}=\frac{7}{2}(2.08\times 10^{-4})(8.31)([20+273]-1172) $$ $$Q_{3\rightarrow 1}=\color{red}{\bf-5.32}\;\rm J$$ See the table below: \begin{array}{|c|c|c|c|} \hline & \Delta E_{th}\;{\rm (J)}& W_s\;{\rm (J)}&Q\;{\rm (J)}\\ \hline 1\rightarrow 2&13.93 & 3.039&16.97\\ \hline 2\rightarrow 3 &-10.13&0 &-10.13 \\ \hline 3\rightarrow1& -3.8 & -1.52 & -5.32 \\ \hline {\rm Sum}& & 1.52 & \\ \hline \end{array} ____________________________________________________________ b) The thermal efficiency is given by $$\eta=\dfrac{W}{Q_H}=\dfrac{1.52}{16.97}$$ $$\eta=\color{red}{\bf 0.089}$$ ____________________________________________________________ c) The power out put is given by $$P_{out}=\dfrac{500}{60}\times 1.52=\color{red}{\bf 12.67}\;\rm W$$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.