Multivariable Calculus, 7th Edition

Published by Brooks Cole
ISBN 10: 0-53849-787-4
ISBN 13: 978-0-53849-787-9

Chapter 16 - Vector Calculus - 16.7 Exercises - Page 1145: 26

Answer

$0$

Work Step by Step

The flux through a surface can be defined only when the surface is orientable. We know that $\iint_S F \cdot dS=\iint_S F \cdot n dS$ Here, $n$ denotes the unit vector. Since, $\iint_S F \cdot dS=\iint_D [P \dfrac{\partial h}{\partial x}-Q+R\dfrac{\partial h}{\partial z}]dA $ where, $D$ is projection of $S$ onto xz-plane. $\iint_S F \cdot n dS=\iint_D 125 \sin^2 \phi [5 \cos^2 \theta \cos \phi \sin \phi +\sin \theta \cos \theta \sin \phi +\cos \phi \sin \theta] dA$ $F_1= \int_{0}^{\pi} \int_0^{\pi} 125 \sin^2 \phi [5 \cos^2 \theta \cos \phi \sin \phi +\sin \theta \cos \theta \sin \phi +\cos \phi \sin \theta] dA$ and $F_2= \int_{0}^{\pi} \int_0^{\pi} 125 \sin^2 \phi [5 \cos^2 \theta (- \cos \phi) \sin \phi +\sin \theta (-\cos \theta) \sin \phi + (-\cos \phi) \times \sin \theta] d\theta d\phi$ Hence, $Flux=F_1+F_2=0$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.