Multivariable Calculus, 7th Edition

Published by Brooks Cole
ISBN 10: 0-53849-787-4
ISBN 13: 978-0-53849-787-9

Chapter 16 - Vector Calculus - 16.7 Exercises - Page 1145: 25

Answer

$-\dfrac{4 \pi}{3}$

Work Step by Step

The flux through a surface can be defined only when the surface is orientable. We know that $\iint_S F \cdot dS=\iint_S F \cdot n dS$ Here, $n$ denotes the unit vector. Since, $\iint_S F \cdot n dS=-\iint_D \dfrac{x^2}{\sqrt {4-x^2-y^2}}dA$ or, $=- \int_{0}^{\pi/2} \int_0^{2} \dfrac{r^3 \cos^2 \theta}{\sqrt {4-r^2}} dr d\theta$ or, $=[- \int_{0}^{\pi/2} \cos^2 \theta] [\int_0^{2} \dfrac{r^3}{\sqrt {4-r^2}} dr]$ or, $=0.5 \times \int_{0}^{\pi/2} 1+\cos( 2 \theta) d \theta \times (-0.5) \times \int_0^{2} (-2r) \dfrac{r^2}{\sqrt {4-r^2}} dr$ or, $=(0.5) \int_{0}^{\pi/2}[\theta \times (0.5) \times \sin ( 2 \theta)]_0^{\pi/2}+\dfrac{16}{3}$ Hence, the flux is $\iint_S F \cdot n dS=-\dfrac{\pi}{4} \times \dfrac{16}{3}=-\dfrac{4 \pi}{3}$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.