Multivariable Calculus, 7th Edition

Published by Brooks Cole
ISBN 10: 0-53849-787-4
ISBN 13: 978-0-53849-787-9

Chapter 16 - Vector Calculus - 16.7 Exercises - Page 1145: 37

Answer

$\iint_S F \cdot dS=\iint_D [P \dfrac{\partial h}{\partial x}-Q+R\dfrac{\partial h}{\partial z}]dA $ where, $D$ is the projection of $S$ onto the xz-plane.

Work Step by Step

The flux through a surface can be defined only when the surface is orientable. We know that $\iint_S F \cdot dS=\iint_S F \cdot n dS$ Here, $n$ denotes the unit vector. Since, $dS=n dA=\pm \dfrac{(r_u \times r_v)}{|r_u \times r_v|}|r_u \times r_v| dA=\pm (r_u \times r_v) dA$ Here, $r_x=i+\dfrac{\partial h}{\partial x} j$ and $r_z=\dfrac{\partial h}{\partial z} j+k$ and $r_x \times r_z=\dfrac{\partial h}{\partial x} i-j+\dfrac{\partial h}{\partial z}k$ Thus, $dS=(\dfrac{\partial h}{\partial x} i-j+\dfrac{\partial h}{\partial z}k) dA$ When $F=Pi+Qj+Rk$ Then, we have, $\iint_S F \cdot dS=\iint_D [P \dfrac{\partial h}{\partial x}-Q+R\dfrac{\partial h}{\partial z}]dA $ where, $D$ is the projection of $S$ onto the xz-plane.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.