Multivariable Calculus, 7th Edition

Published by Brooks Cole
ISBN 10: 0-53849-787-4
ISBN 13: 978-0-53849-787-9

Chapter 16 - Vector Calculus - 16.7 Exercises - Page 1145: 20

Answer

$241 \pi$

Work Step by Step

The flux through a surface can be defined only when the surface is orientable. We know that $\iint_S F \cdot dS=\iint_S F \cdot n dS$ Here, $n$ denotes the unit vector. Since, $dS=n dA=\pm \dfrac{(r_u \times r_v)}{|r_u \times r_v|}|r_u \times r_v| dA=\pm (r_u \times r_v) dA$ The surface integral over $S_1$: $\iint_S x^2+y^2+z^2 dS= \iint_{D} (9 \sin^2 u+9 \cos^2 u+v^2) (3) dA=(3) \iint_{D}9+v^2 dA= (3) \times \int_{0}^{2} \int_0^{2 \pi} 9+v^2 du dv=124 \pi$ The surface integral over $S_2$ $\iint_S x^2+y^2+z^2 dS= \iint_{D} (v^2 \sin^2 u+v^2 \cos^2 u+2^2) v dA=\iint_{D}v^3+4v dA= \int_{0}^{3} \int_0^{2 \pi} v^3+4v du dv=\dfrac{153 \pi}{2}$ The surface integral over $S_3$ $\iint_S x^2+y^2+z^2 dS= \iint_{D} (v^2 \sin^2 u+v^2 \cos^2 u+(0)^2) v dA=\iint_{D}v^3 du dv=2 \pi \int_{0}^{3} v^3 dv dv=\dfrac{81 \pi}{2}$ Thus, we have $\iint_{S} xz dS=\iint_{S_1} xz dS+\iint_{S_2} xz dS+\iint_{S_3} xz dS=124 \pi+\dfrac{153 \pi}{2}+\dfrac{81 \pi}{2}=241 \pi$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.