Multivariable Calculus, 7th Edition

Published by Brooks Cole
ISBN 10: 0-53849-787-4
ISBN 13: 978-0-53849-787-9

Chapter 16 - Vector Calculus - 16.7 Exercises - Page 1145: 23

Answer

$\dfrac{713}{180}$

Work Step by Step

The flux through a surface can be defined only when the surface is orientable. We know that $\iint_S F \cdot dS=\iint_S F \cdot n dS$ Here, $n$ denotes the unit vector. Since, $\iint_S F \cdot dS=\iint_D [P \dfrac{\partial h}{\partial x}-Q+R\dfrac{\partial h}{\partial z}]dA $ $\iint_S F \cdot n dS=\iint_D -xy (-2x) -(yz) (-2y) +(zx) dA= \int_{0}^{1} \int_0^{1} [2x^2y+2y^2z+zx] dy dx$ or, $= \int_{0}^{1} \int_0^{1} [2x^2y+2y^2(4-x^2-y^2)+(4-x^2-y^2) x] dy dx$ or, $= \int_{0}^{1} [x^2+\dfrac{8}{3} -\dfrac{2x^2}{3}-\dfrac{2}{5} +4x-x^3-\dfrac{x}{3}] dx$ Hence, the flux is: $\iint_S F \cdot n dS=[\dfrac{34x}{15}+\dfrac{x^3}{9}+\dfrac{11x^2}{6}-\dfrac{x^4}{4}]_{0}^{1}=\dfrac{713}{180}$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.