Multivariable Calculus, 7th Edition

Published by Brooks Cole
ISBN 10: 0-53849-787-4
ISBN 13: 978-0-53849-787-9

Chapter 16 - Vector Calculus - 16.7 Exercises - Page 1145: 24

Answer

$-\dfrac{1712 \pi}{15}$

Work Step by Step

The flux through a surface can be defined only when the surface is orientable. We know that $\iint_S F \cdot dS=\iint_S F \cdot n dS$ Here, $n$ denotes the unit vector. Since, $\iint_S F \cdot n dS=\iint_D \sqrt {x^2+y^2}+z^3 dA$ Plug $z=x^2+y^2$ in the above equation. $=\iint_D \sqrt {x^2+y^2}+(x^2+y^2) \sqrt {x^2+y^2}dA $ or, $= \int_{1}^{3} \int_0^{2 \pi} (r^2+1) \times \sqrt {r^2} \times r d\theta dr$ or, $= \int_0^{2 \pi} d\theta \times \int_{1}^{3} (r^4+r^2) dr$ or, $= (2 \pi) \times \int_{1}^{3}(r^4+r^2) dr$ Hence, the flux is $\iint_S F \cdot n dS=2 \pi [\dfrac{r^5}{5}+\dfrac{r^3}{3}]_1^{3}=-\dfrac{1712 \pi}{15}$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.