Multivariable Calculus, 7th Edition

Published by Brooks Cole
ISBN 10: 0-53849-787-4
ISBN 13: 978-0-53849-787-9

Chapter 15 - Multiple Integrals - 15.9 Exercises - Page 1062: 41

Answer

$ \dfrac{4096 \pi}{21}$

Work Step by Step

The spherical coordinates system can be expressed as: $x=\rho \sin \phi \cos \theta; y=\rho \sin \phi \sin \theta; z=\rho \cos \phi$ and $\rho=\sqrt {x^2+y^2+z^2}$ or, $ \rho^2=x^2+y^2+z^2$ We define the jacobian for spherical coordinates as: $\phi^2 \sin \phi$, Therefore, $\int_0^{2 \pi} \int_0^{\pi/2} \int_0^{4 \cos \phi} \rho^3 i \rho^2 \rho^2 \sin \phi d\rho d \phi d \theta=\int_0^{2 \pi} \int_0^{\pi/2} [ \rho^6/6]_0^{4 \cos \phi} \sin \phi d\rho d \phi d \ \theta$ and consider $ u=\cos \phi$ Thus, we have: $E=\dfrac{(4)^6}{6} [2 \pi \times(\dfrac{-\cos^7 \pi}{7})]_0^{\pi/2} \\ = \dfrac{4096 \pi}{21}$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.