Multivariable Calculus, 7th Edition

Published by Brooks Cole
ISBN 10: 0-53849-787-4
ISBN 13: 978-0-53849-787-9

Chapter 15 - Multiple Integrals - 15.9 Exercises - Page 1062: 19

Answer

$\int_{0}^{\pi/2}\int_{0}^{3} \int_0^{2}f(r \cos \theta,r \sin \theta,z) r dz dr d\theta$

Work Step by Step

Conversion of rectangular to spherical coordinates is as follows: $x=\rho \sin \phi \cos \theta; y=\rho \sin \phi \sin \theta;z=\rho \cos \phi$ and $\rho=\sqrt {x^2+y^2+z^2}$; $\cos \phi =\dfrac{z}{\rho}$; $\cos \theta=\dfrac{x}{\rho \sin \phi}$ Conversion of the rectangular to cylindrical coordinate system is as follows: $r^2=x^2+y^2 \\ \tan \theta=\dfrac{y}{x} \\z=z$ Here, $x=r \cos \theta; y=r \sin \theta, z=z$ Here, we have $\iiint f(x,y,z) dz r dr d\theta=\iiint f(r \cos \theta,r \sin \theta,z) dz r dr d\theta$ Plug in the boundaries: $\iiint f(r \cos \theta,r \sin \theta,z) dz r dr d\theta= \int_{0}^{\pi/2}\int_{0}^{3} \int_0^{2}f(r \cos \theta,r \sin \theta,z) r dz dr d\theta$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.