Multivariable Calculus, 7th Edition

Published by Brooks Cole
ISBN 10: 0-53849-787-4
ISBN 13: 978-0-53849-787-9

Chapter 15 - Multiple Integrals - 15.9 Exercises - Page 1062: 30

Answer

$\dfrac{8\sqrt 2 \pi}{3}$

Work Step by Step

The spherical coordinates system can be expressed as follows: $x=\rho \sin \phi \cos \theta \\ y=\rho \sin \phi \sin \theta \\z=\rho \cos \phi$; and $\rho=\sqrt {x^2+y^2+z^2} \implies \rho^2=x^2+y^2+z^2$ Since, $x^2+y^2+z^2 =4 \implies (\rho \sin \phi \cos \theta)^2+(\rho \sin \phi \sin \theta)^2 + (\rho \cos \phi)^2 =4 $ and $\rho=2$ Also, the jacobian for spherical coordinates can be expressed as: $\rho^2 \sin \rho$, therefore, $\iiint{E} \sqrt {x^2+y^2+z^2} dV =\iiint_{E} \rho \rho^2 \sin \rho d\rho d\theta d\phi$ $E= \int_{0}^{2\pi} \int_{\pi/4}^{\pi/2} \int_{0}^{2} \rho^2 \sin \phi d\rho d\theta d\phi$ or, $=\int_0^{2 \pi} \int_{\pi/4}^{\pi/2} [\dfrac{\rho^3}{3}]_0^2 d\theta $ or, $=\dfrac{8}{3} \int_0^{2 \pi} [-\cos\phi]_{\pi/4}^{\pi/2} d \theta]$ or, $=\dfrac{8}{3} \int_0^{2 \pi} [\dfrac{4\sqrt 2}{3} d \theta$ or, $=\dfrac{8\sqrt 2 \pi}{3}$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.