Multivariable Calculus, 7th Edition

Published by Brooks Cole
ISBN 10: 0-53849-787-4
ISBN 13: 978-0-53849-787-9

Chapter 15 - Multiple Integrals - 15.9 Exercises - Page 1062: 40

Answer

$$0$$

Work Step by Step

The spherical coordinates system can be written as: $x=\rho \sin \phi \cos \theta; y=\rho \sin \phi \sin \theta; z=\rho \cos \phi$; and $\rho=\sqrt {x^2+y^2+z^2} \implies \rho^2=x^2+y^2+z^2$ Now, we will write the jacobian for spherical coordinates as $\phi^2 \sin \phi$. Thus, $\int_{-a}^{a} \int_{-\sqrt {a^2-y^2}} \int_{-\sqrt {a^2 -x^2-y^2}}^{\sqrt {a^2-x^2-y^2}} (x^2 z+y^2 z+z^3) \ dz dx dy =\int_0^{2 \pi} \int_0^{\pi} \int_0^{a} (\rho \cos \phi \rho^2 \rho^2 \sin \phi d\rho d \phi d \theta \\=\int_0^{2 \pi} d \theta \int_0^{\pi} \cos \phi \sin \phi d \phi \int_0^a \rho^5 d\rho$ Now, set $ \cos \theta =u$ and $ du=-\sin \theta $ Thus, $E=2 \pi -\int_0^{\pi} u du [\rho^6/6]_0^u =2 \pi(\dfrac{\cos^2 \pi}{2} -\cos^2 0) \times \dfrac{a^6}{6}=0$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.