Multivariable Calculus, 7th Edition

Published by Brooks Cole
ISBN 10: 0-53849-787-4
ISBN 13: 978-0-53849-787-9

Chapter 15 - Multiple Integrals - 15.9 Exercises - Page 1062: 23

Answer

$\dfrac{1688 \pi}{15}$

Work Step by Step

Conversion of rectangular to spherical coordinates is as follows: $x=\rho \sin \phi \cos \theta; y=\rho \sin \phi \sin \theta;z=\rho \cos \phi$ and $\rho=\sqrt {x^2+y^2+z^2}$; $\cos \phi =\dfrac{z}{\rho}$; $\cos \theta=\dfrac{x}{\rho \sin \phi}$\ Here, we have: $(x^2+y^2+z^2)=9 \implies \rho=3$ We need to set up the integral. $I=\int_0^{\pi} \int_{0}^{2 \pi}\int_{2}^{3} (\rho^2 \sin^2 \phi) (\rho^2 \sin \phi) d\rho d\theta d\phi$ or, $I=\int_0^{\pi} \int_{0}^{2 \pi} [\dfrac{\rho^5}{5}\sin^3 \phi]_2^3 d\theta d\phi$ or, $I=\int_0^{\pi} \dfrac{211}{5}(2 \pi \sin^3 \phi ] d\phi$ or, $I=[\dfrac{422\pi}{5} \int_0^{\pi} \sin \phi(1-\cos^2 \phi) d\phi$ Plug in: $p=\cos \phi \implies dp=-\sin \phi d\phi$ Thus, we have $I= [\dfrac{422\pi}{5} \int_1^{-1} 1-p^2 dp$ or, $[\dfrac{422\pi}{5}](p-\dfrac{p^3}{3}]_1^{-1} =\dfrac{1688 \pi}{15}$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.