Multivariable Calculus, 7th Edition

Published by Brooks Cole
ISBN 10: 0-53849-787-4
ISBN 13: 978-0-53849-787-9

Chapter 15 - Multiple Integrals - 15.6 Exercises - Page 1040: 23

Answer

$$\dfrac{\pi}{6} (101 \sqrt {101}-1) $$

Work Step by Step

The surface area of the part $z=f(x,y)$ can be computed as: $A(S)=\iint_{D} \sqrt {1+(z_x)^2+(z_y)^2} dx \ dy$ and, $\iint_{D} dA$ represents the projection of the surface on the $xy$-plane. The area of the given surface is: $A(S)=\iint_{D} \sqrt{1+(2x)^2+(2z)^2} dA $ or, $=\sqrt{1+4(x^2+z^2)} \iint_{D} dA $ Now, apply the polar co-ordinates because of the part $x^2+z^2$ Thus, $$A(S)=\int_{0}^{2 \pi} \int_{0}^5 \sqrt {1+4r^2} r dr d \theta $$ or, $$= \int_{0}^{2 \pi} d \theta \times \int_{0}^5 \sqrt {1+4r^2} r dr $$ Let us substitute that $a=1+4r^2 $ and $ 8r dr= da$ $$=[ \theta]_0^{2 \pi} \int_{0}^{5} \sqrt a \dfrac{da}{8} \\= \dfrac{\pi}{4} \times [\dfrac{2}{3} (4r^2+1)^{3/2}]_0^5 $$ and $$A(S)= \dfrac{\pi}{6} (101 \sqrt {101}-1) $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.