Multivariable Calculus, 7th Edition

Published by Brooks Cole
ISBN 10: 0-53849-787-4
ISBN 13: 978-0-53849-787-9

Chapter 15 - Multiple Integrals - 15.6 Exercises - Page 1040: 10

Answer

$4 \pi $

Work Step by Step

The surface Area of the part $z=f(x,y)$ can be computed as: $A(S)=\iint_{D} \sqrt {1+(f_x)^2+(f_y)^2} dx \ dy$ and, $\iint_{D} dA$ is the projection of the surface on the $xy$-plane. Given : $f(x,y,z)=x^{2}+y^{2}+z^{2}=4z$; and when $z=1$, then, we have: $f(x,y,z)=x^{2}+y^{2}+z^{2}=4$ ; Now, $x^{2}+y^{2}=3$ and $z=\sqrt {4-x^{2}-y^{2}}$ We have: $ f_{x}=\dfrac{-x}{\sqrt {4-x^{2}-y^{2}}}, \quad f_{y}=\dfrac{-y}{\sqrt {4-x^{2}-y^{2}}}$ Thus, $ A(S)=\iint_{D} \sqrt{[\dfrac{(-x)}{(4-x^{2}-y^{2})^{1 / 2}}]^{2}+[\dfrac{(-y)}{(4-x^{2}-y^{2})^{1 / 2}}]^{2}+1} d A $ We need to apply the polar co-ordinates for the part $x^2+y^2+z^2$ $A(S)=\int_{0}^{2 \pi} \int_{0}^{\sqrt{3}} [\sqrt{\dfrac{r^{2}}{4-r^{2}}+1} ] r d r d \theta \\ =\int_{0}^{2 \pi} \int_{0}^{\sqrt{3}} \sqrt{\dfrac{r^{2}+4-r^{2}}{4-r^{2}}} \ r \ dr \ d\theta \\ =\int_{0}^{2 \pi} \int_{0}^{\sqrt{3}} \dfrac{2 r}{\sqrt{4-r^{2}}} \ d r \ d \theta \\ =\int_{0}^{2 \pi}\left[-2(4-r^{2}\right)^{1 / 2}]_{0}^{\sqrt{3}} \ d \theta \\ =\int_{0}^{2 \pi}(-2+4) d \theta\\=2 [\theta]_{0}^{2 \pi} \\=4 \pi $
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.