Multivariable Calculus, 7th Edition

Published by Brooks Cole
ISBN 10: 0-53849-787-4
ISBN 13: 978-0-53849-787-9

Chapter 15 - Multiple Integrals - 15.6 Exercises - Page 1040: 14

Answer

$\approx 4.1073$

Work Step by Step

The surface area of the part $z=f(x,y)$ can be computed as: $A(S)=\iint_{D} \sqrt {1+(z_x)^2+(z_y)^2} dx \ dy$ and, $\iint_{D} dA$ represents the projection of the surface on the $xy$-plane. Now, $A(S)=\iint_{D} \sqrt {1+[-2x \sin (x^2+y^2]^2+[-2y \sin (x^2+y^2]^2} dA $ and $ A(S)= \iint_{D} \sqrt {1+4(x^2+y^2)] \sin^2 (x^2+y^2)} dA$ Apply the polar co-ordinates for the part $x^2+y^2$. $$A(S)=\iint_{D} \sqrt {1+4(x^2+y^2)] \sin^2 (x^2+y^2)} dA \\=\int_{0}^{2\pi} \int_{0}^{1} \sqrt {1+4r^2 \sin^2 r^2 (\cos^2 \theta +\sin^2 \theta ) } \ r dr d \theta \\= 2 \pi \int_0^{1} \sqrt {1+4r^2 \sin^2(r^2)} \ r \space dr $$ Now, we will use a calculator to find the area of the given surface. $$A(S)=2 \pi \int_0^{1} \sqrt {1+4r^2 \sin^2(r^2)} \ r dr \\ \approx 4.1073$$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.