Multivariable Calculus, 7th Edition

Published by Brooks Cole
ISBN 10: 0-53849-787-4
ISBN 13: 978-0-53849-787-9

Chapter 15 - Multiple Integrals - 15.6 Exercises - Page 1040: 6

Answer

$\dfrac{\pi}{6} [17 \sqrt {17}-1] $

Work Step by Step

The surface area of the surface can be written as: $A(S)=\iint_{D} \sqrt {1+(f_x)^2+(f_y)^2} dx \ dy$ and, $\iint_{D} dA$ is the projection of the surface on the xy-plane. Now, the area of the given surface is: $A(S)=\iint_{D} \sqrt{1+(-2x)^2+(-2y)^2} dA \\= \iint_{D} \sqrt{1+4(x^2+y^2)} dA $ and, $\iint_{D} dA$ is the area of the region inside $D$. We can use the polar co-ordinates because of the part $x^2+z^2$ Therefore, we have: $A(S)=\int_{0}^{2 \pi} \int_{0}^{2} \sqrt {1+4r^2} r dr d \theta \\= \int_{0}^{2 \pi} d \theta \times \int_{0}^{2} \sqrt {1+4r^2} r dr $ Substitute $1+4r^2 = a \implies da= 8r dr$ Now, $A(S)=2\pi \times \dfrac{1}{8} \int_{1}^{17} \sqrt a da \\=\dfrac{\pi}{4} [\dfrac{2 a^{3/2}}{3}]_1^{17} \\= \dfrac{\pi}{6} [17^{3/2} -1^{3/2}] \\= \dfrac{\pi}{6} [17 \sqrt {17}-1] $
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.