Multivariable Calculus, 7th Edition

Published by Brooks Cole
ISBN 10: 0-53849-787-4
ISBN 13: 978-0-53849-787-9

Chapter 15 - Multiple Integrals - 15.6 Exercises - Page 1040: 20

Answer

$$\approx 2.695884$$

Work Step by Step

The surface area of the part $z=f(x,y)$ can be computed as: $A(S)=\iint_{D} \sqrt {1+(z_x)^2+(z_y)^2} dx \ dy$ and, $\iint_{D} dA$ represents the projection of the surface on the $xy$-plane. The area of the given surface is: $A(S)=\iint_{D} \sqrt{1+(2x/1+y^2)^{2}+(-2y/-2y(1+x^2){1+y^2})^{2}} d A \\ =\iint_{D} \sqrt{1+\dfrac{4x^2}{(1+y^2)^2}+\dfrac{4y^2(1+x^2)^2}{(1+y^2)^4}} d A $ and $A(S)=\iint_{D} \dfrac{1}{(1+y^2)^2} \sqrt {(1+y^2)^4+4x^2 (1+y^2)^2+4y^2(1+x^2)^2} dA $ Next, apply the polar co-ordinates because of the part $x^2+y^2$ Now, we will use a calculator to find the area of the given surface. $$A(S)=4 \int_{0}^{1} \int_{0}^{1-x}\dfrac{1}{(1+y^2)^2} \sqrt {(1+y^2)^4+4x^2 (1+y^2)^2+4y^2(1+x^2)^2} dy dx \approx 2.695884$$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.