Multivariable Calculus, 7th Edition

Published by Brooks Cole
ISBN 10: 0-53849-787-4
ISBN 13: 978-0-53849-787-9

Chapter 13 - Vector Functions - 13.1 Exercises - Page 870: 5

Answer

$\langle-1,\ \displaystyle \frac{\pi}{2},0\rangle$

Work Step by Step

Component by component, $\displaystyle \lim_{t\rightarrow\infty}\frac{1+t^{2}}{1-t^{2}}=\quad $divide numerator and denominator with $t^{2}$ $=\displaystyle \lim_{t\rightarrow\infty}\frac{(1/t^{2})+1}{(1/t^{2})-1}=\frac{0+1}{0-1}=\boxed{-1}$, $\displaystyle \lim_{t\rightarrow\infty}\tan^{-1}t =\boxed{\displaystyle \frac{\pi}{2}} . $ $\displaystyle \lim_{t\rightarrow\infty}\frac{1-e^{-2t}}{t}=\lim_{t\rightarrow\infty}\frac{1}{t}-\frac{1}{te^{2t}}$ $=0-0=\boxed{0}$. $\displaystyle \lim_{t\rightarrow\infty}\langle\frac{1+t^{2}}{1-t^{2}},\ \tan^{-1}t,\ \displaystyle \frac{1-e^{-2t}}{t}\rangle=\langle-1,\ \displaystyle \frac{\pi}{2},0\rangle$.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.