Multivariable Calculus, 7th Edition

Published by Brooks Cole
ISBN 10: 0-53849-787-4
ISBN 13: 978-0-53849-787-9

Chapter 13 - Vector Functions - 13.1 Exercises - Page 870: 6

Answer

$\langle 0,\ \displaystyle \frac{1}{2},1\rangle$

Work Step by Step

Component by component, $\displaystyle \lim_{t\rightarrow\infty}te^{-t}=\lim_{t\rightarrow\infty}\frac{t}{e^{t}}\quad$[$\displaystyle \frac{0}{0}$ ... L'Hospital's Rule]. $=\displaystyle \lim_{t\rightarrow\infty}\frac{1}{e^{t}}=\boxed{0} $ $\displaystyle \lim_{t\rightarrow\infty}\frac{t^{3}+t}{2t^{3}-1}=\quad $... divide numerator and denominator with $t^{3}$ $\displaystyle \lim_{t\rightarrow\infty}\frac{1+(1/t^{2})}{2-(1/t^{3})}=\frac{1+0}{2-0}=\boxed{\frac{1}{2}}$ $\displaystyle \lim_{t\rightarrow\infty}t \displaystyle \sin\frac{1}{t}=\lim_{t\rightarrow\infty}\frac{\sin(1/t)}{1/t}=\quad\left[\begin{array}{lll} u=1/t, & & \\ t\rightarrow\infty & \Rightarrow & u\rightarrow 0 \end{array}\right]$ $=\displaystyle \lim_{u\rightarrow 0}\frac{\sin u}{u}=\boxed{1}$ $\displaystyle \lim_{t\rightarrow\infty}\langle te^{-t},\ \displaystyle \frac{t^{3}+t}{2t^{3}-1},\ t\displaystyle \sin\frac{1}{t}\rangle=\langle 0,\ \displaystyle \frac{1}{2},1\rangle$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.