Multivariable Calculus, 7th Edition

Published by Brooks Cole
ISBN 10: 0-53849-787-4
ISBN 13: 978-0-53849-787-9

Chapter 11 - Multiple Integrals - 15.2 Exercises - Page 1011: 14

Answer

$\displaystyle \frac{16\sqrt{2}-8}{15}\approx 0.9752$

Work Step by Step

$\displaystyle \int_{0}^{1}\int_{0}^{1}\sqrt{s+t}ds dt=\displaystyle \int_{0}^{1}[\int_{0}^{1}\sqrt{s+t}ds ]dt=\left[\begin{array}{ll} u=t+s & \\ du=ds & \\ t=0\Rightarrow u=t, & t=1\Rightarrow u=t+1 \end{array}\right]$ ... treat t as a constant in the inner integral. $=\displaystyle \int_{0}^{1}[\int_{t}^{t+1}u^{1/2}du ]dt$ $= =\displaystyle \int_{0}^{1}[\frac{u^{3/2}}{3/2} ]_{t}^{t+1}dt$ $=\displaystyle \frac{2}{3}\int_{0}^{1}[(t+1)^{3/2}-t^{3/2}]dt=$ $=\displaystyle \frac{2}{3}[\frac{(t+1)^{5/2}-t^{5/2}}{5/2}]_{0}^{1}$ $=\displaystyle \frac{4}{15}[(2^{5/2}-1)-(1-0)]$ $=\displaystyle \frac{4}{15}(2^{5/2}-2)$ $=\displaystyle \frac{4}{15}(4\sqrt{2}-2)$ $= \displaystyle \frac{16\sqrt{2}-8}{15}\approx 0.9752$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.