Multivariable Calculus, 7th Edition

Published by Brooks Cole
ISBN 10: 0-53849-787-4
ISBN 13: 978-0-53849-787-9

Chapter 11 - Multiple Integrals - 15.2 Exercises - Page 1011: 9

Answer

$\displaystyle \frac{21\ln 2}{2}$

Work Step by Step

$\displaystyle \int_{1}^{4}\int_{1}^{2}(\frac{x}{y}+\frac{y}{x})dydx=\int_{1}^{4}[\int_{1}^{2}(\frac{x}{y}+\frac{y}{x})dy]dx$ treat x as a constant in the inner integral. $=\displaystyle \int_{1}^{4}[\int_{1}^{2}(x\cdot\frac{1}{y}+\frac{1}{x}\cdot y)dy]dx$ $=\displaystyle \int_{1}^{4}[x\ln|y|+\frac{1}{x}\cdot\frac{y^{2}}{2}]_{y=1}^{y=2}dx$ $=\displaystyle \int_{1}^{4}[x\ln 2+\frac{1}{x}\cdot\frac{2^{2}}{2}-(x\ln 1+\frac{1}{x}\cdot\frac{1}{2}) ]dx$ $=\displaystyle \int_{1}^{4}(x\ln 2+\frac{3}{2x})dx$ $=[\displaystyle \frac{x^{2}}{2}\ln 2+\frac{3}{2}\ln|x|]_{1}^{4}$ $=\displaystyle \frac{4^{2}}{2}\ln 2+\frac{3}{2} \ln 4- (\displaystyle \frac{1^{2}}{2}\ln 2-\frac{3}{2}\ln 1)$ $=\displaystyle \frac{15}{2}\ln 2+\frac{3}{2}\ln 2^{2}$ $=\displaystyle \frac{15}{2}\ln 2+\frac{3}{2}\cdot 2\ln 2$ $=\displaystyle \frac{21\ln 2}{2}$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.