Multivariable Calculus, 7th Edition

Published by Brooks Cole
ISBN 10: 0-53849-787-4
ISBN 13: 978-0-53849-787-9

Chapter 11 - Multiple Integrals - 15.2 Exercises - Page 1011: 15

Answer

$0$

Work Step by Step

$\displaystyle \iint_{R}\sin(x-y)dA=\int_{0}^{\pi/2}\int_{0}^{\pi/2}\sin(x-y)dydx=\int_{0}^{\pi/2}[\int_{0}^{\pi/2}\sin(x-y)dy]dx$ ... treat $x$ as a constant in the inner integral.$\left[\begin{array}{ll} t=x-y & \\ dt=-dy & \\ y=0\Rightarrow t=x, & y=\pi/2\Rightarrow t=x-\pi/2 \end{array}\right]$ $=\displaystyle \int_{0}^{\pi/2}[\int_{x}^{x-\pi/2}\sin(t)(-dt)]dx$ $=\displaystyle \int_{0}^{\pi/2}[\cos(x-\frac{\pi}{2})-\cos(x-0)]dx$ $=\displaystyle \int_{0}^{\pi/2}[\cos(x-\frac{\pi}{2})-\cos x]dx$ $=[\displaystyle \sin(x-\frac{\pi}{2})-\sin x]_{0}^{\pi/2}$ $=\displaystyle \sin 0-\sin\frac{\pi}{2}-[\sin(-\frac{\pi}{2})-\sin 0]$ $=0-1-(-1-0)$ $=-1+1$ $=0$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.