Calculus 8th Edition

Published by Cengage
ISBN 10: 1285740629
ISBN 13: 978-1-28574-062-1

Chapter 6 - Inverse Functions - 6.4* General Logarithmic and Exponential Functions - 6.4* Exercise: 26

Answer

$=(sin2^{x})+x.2^{x}(cos2^{x})ln2$

Work Step by Step

$\frac{d}{dx}g(x)=\frac{d}{dx}(x sin2^{x})$ $=\frac{d}{dx}(x)(sin2^{x})+x\frac{d}{dx}(sin2^{x})$ $=1.(sin2^{x})+x.(cos2^{x})(2^{x})ln2$ $=(sin2^{x})+x.2^{x}(cos2^{x})ln2$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.