Calculus, 10th Edition (Anton)

Published by Wiley
ISBN 10: 0-47064-772-8
ISBN 13: 978-0-47064-772-1

Chapter 6 - Exponential, Logarithmic, And Inverse Trigonometric Functions - 6.5 L'Hopital's Rule; Indeterminate Forms - Exercises Set 6.5 - Page 448: 55

Answer

$\textbf{(a)} 0$, $\textbf{(b)}+\infty$, $\textbf{(c)} 0$, $\textbf{(d)}-\infty$, $\textbf{(e)}$ $+\infty$, $\textbf{(f)}$ $-\infty$

Work Step by Step

$\textbf{(a)}$ $$\lim\limits_{x \to 0^{+}}{\frac{x}{\ln x}} = \lim\limits_{x \to 0^{+}}{x} \cdot \lim\limits_{x \to 0^{+}}{\frac{1}{\ln x}} = 0 \cdot \frac{1}{-\infty} = \frac{0}{-\infty} = 0$$ $\textbf{(b)}$ $$\lim\limits_{x \to +\infty}{\frac{x^3}{e^{-x}}} =\lim\limits_{x \to +\infty}{\frac{x^3}{1/e^x}} =\lim\limits_{x \to +\infty}{e^xx^3} =\lim\limits_{x \to +\infty}{e^x} \cdot \lim\limits_{x \to +\infty}{x^3} = +\infty\cdot+\infty = +\infty$$ $\textbf{(c)}$ $$\lim\limits_{x \to (\pi/2)^-}(\cos x)^{\tan x} = \lim\limits_{x \to (\pi/2)^-}(\cos x)^{\lim\limits_{x \to (\pi/2)^-}\tan x} = 0^{+\infty} = 0$$ $\textbf{(d)}$ $$\lim\limits_{x \to 0^+}(\ln x)\cot x =\lim\limits_{x \to 0^+}(\ln x) \cdot \lim\limits_{x \to 0^+}(\cot x) = (-\infty) \cdot (+\infty) = -\infty $$ $\textbf{(e)}$ $$\lim\limits_{x \to 0^+}\left(\frac{1}{x} - \ln x\right) = \lim\limits_{x \to 0^+}\left(\frac{1}{x}\right) - \lim\limits_{x \to 0^+}(\ln x) = +\infty - (-\infty) = +\infty$$ $\textbf{(f)}$ $$\lim\limits_{x \to 0^+}(x - x^3) = \lim\limits_{x \to 0^+}x - \lim\limits_{x \to 0^+}x^3 = -\infty + (-\infty) = -\infty$$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.