Calculus, 10th Edition (Anton)

Published by Wiley
ISBN 10: 0-47064-772-8
ISBN 13: 978-0-47064-772-1

Chapter 6 - Exponential, Logarithmic, And Inverse Trigonometric Functions - 6.5 L'Hopital's Rule; Indeterminate Forms - Exercises Set 6.5 - Page 448: 33

Answer

$$\frac{1}{2}$$

Work Step by Step

$$\eqalign{ & \mathop {\lim }\limits_{x \to + \infty } \left( {\sqrt {{x^2} + x} - x} \right) \cr & {\text{Evaluate the limit}} \cr & \mathop {\lim }\limits_{x \to + \infty } \left( {\sqrt {{x^2} + x} - x} \right) = \sqrt {{\infty ^2} + \infty } - \infty \cr & {\text{ }} = \infty - \infty \cr & {\text{Rationalizing}} \cr & = \mathop {\lim }\limits_{x \to + \infty } \left( {\sqrt {{x^2} + x} - x} \right) \times \frac{{\sqrt {{x^2} + x} + x}}{{\sqrt {{x^2} + x} + x}} \cr & = \mathop {\lim }\limits_{x \to + \infty } \frac{{{{\left( {\sqrt {{x^2} + x} } \right)}^2} - {x^2}}}{{\sqrt {{x^2} + x} + x}} \cr & = \mathop {\lim }\limits_{x \to + \infty } \frac{{{x^2} + x - {x^2}}}{{\sqrt {{x^2} + x} + x}} \cr & = \mathop {\lim }\limits_{x \to + \infty } \frac{x}{{\sqrt {{x^2} + x} + x}} = \mathop {\lim }\limits_{x \to + \infty } \frac{x}{{x\sqrt {x + 1} + x}} \cr & {\text{ }} = \mathop {\lim }\limits_{x \to + \infty } \frac{1}{{\sqrt {x + 1} + 1}} \cr & {\text{Evaluate the limit}} \cr & \mathop {\lim }\limits_{x \to + \infty } \frac{1}{{\sqrt {x + 1} + 1}} = \frac{1}{{\sqrt {\infty + 1} + 1}} \cr & {\text{ }} = \frac{1}{{1 + 1}} = \frac{1}{2} \cr & {\text{Therefore,}} \cr & \mathop {\lim }\limits_{x \to + \infty } \left( {\sqrt {{x^2} + x} - x} \right) = \frac{1}{2} \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.