Calculus, 10th Edition (Anton)

Published by Wiley
ISBN 10: 0-47064-772-8
ISBN 13: 978-0-47064-772-1

Chapter 6 - Exponential, Logarithmic, And Inverse Trigonometric Functions - 6.5 L'Hopital's Rule; Indeterminate Forms - Exercises Set 6.5 - Page 448: 12

Answer

$$ + \infty $$

Work Step by Step

$$\eqalign{ & \mathop {\lim }\limits_{x \to {0^ + }} \frac{{\sin x}}{{{x^2}}} \cr & {\text{Evaluate using theorem 1}}{\text{.2}}{\text{.2}} \cr & \mathop {\lim }\limits_{x \to {0^ + }} \frac{{\sin x}}{{{x^2}}} = \frac{{\sin \left( 0 \right)}}{{{0^2}}} = \frac{0}{0} \cr & {\text{The numerator and denominator have a limit of 0}}{\text{, so the limit is }} \cr & {\text{an indeterminate form of type 0/0}}{\text{. Use L'Hopital's rule}} \cr & \mathop {\lim }\limits_{x \to {0^ + }} \frac{{\sin x}}{{{x^2}}} = \mathop {\lim }\limits_{x \to {0^ + }} \frac{{d/dx\left( {\sin x} \right)}}{{d/dx\left( {{x^2}} \right)}} \cr & \mathop {\lim }\limits_{x \to {0^ + }} \frac{{\sin x}}{{{x^2}}} = \mathop {\lim }\limits_{x \to {0^ + }} \frac{{\cos x}}{{2x}} \cr & {\text{evaluating}} \cr & = \frac{{\cos \left( 0 \right)}}{{2\left( {{0^ + }} \right)}} = \frac{1}{{{0^ + }}} \cr & {\text{We find that 1 is positive and the denominator tends to a positive}} \cr & {\text{number}}{\text{, so }} \cr & \mathop {\lim }\limits_{x \to {0^ + }} \frac{{\sin x}}{{{x^2}}} = + \infty \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.