Calculus, 10th Edition (Anton)

Published by Wiley
ISBN 10: 0-47064-772-8
ISBN 13: 978-0-47064-772-1

Chapter 6 - Exponential, Logarithmic, And Inverse Trigonometric Functions - 6.5 L'Hopital's Rule; Indeterminate Forms - Exercises Set 6.5 - Page 448: 11

Answer

$$ - 1$$

Work Step by Step

$$\eqalign{ & \mathop {\lim }\limits_{x \to {\pi ^ + }} \frac{{\sin x}}{{x - \pi }} \cr & {\text{Evaluate using theorem 1}}{\text{.2}}{\text{.2 }}\left( {{\text{law }}\left( d \right)} \right) \cr & = \frac{{\mathop {\lim }\limits_{x \to {\pi ^ + }} \left( {\sin x} \right)}}{{\mathop {\lim }\limits_{x \to {\pi ^ + }} \left( {x - \pi } \right)}} \cr & {\text{Using law }}\left( a \right) \cr & = \frac{{\sin \pi }}{{\pi - 0}} \cr & = \frac{0}{0} \cr & {\text{The numerator and denominator have a limit of 0}}{\text{, so the limit is }} \cr & {\text{an indeterminate form of type 0/0}}{\text{. Use L'Hopital's rule}} \cr & \mathop {\lim }\limits_{x \to {\pi ^ + }} \frac{{\sin x}}{{x - \pi }} = \mathop {\lim }\limits_{x \to 0} \frac{{d/dx\left( {\sin x} \right)}}{{d/dx\left( {x - \pi } \right)}} \cr & = \mathop {\lim }\limits_{x \to {\pi ^ + }} \frac{{\cos x}}{1} \cr & {\text{evaluating}} \cr & = \cos \pi \cr & = - 1 \cr & {\text{then }}\mathop {\lim }\limits_{x \to {\pi ^ + }} \frac{{\sin x}}{{x - \pi }} = - 1 \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.