The Structure of Scientific Revolutions

Influence and reception

The Structure of Scientific Revolutions has been credited with producing the kind of "paradigm shift" Kuhn discussed.[5] Since the book's publication, over one million copies have been sold, including translations into sixteen different languages.[29] In 1987, it was reported to be the twentieth-century book most frequently cited in the period 1976–1983 in the arts and the humanities.[30]

Philosophy

The first extensive review of The Structure of Scientific Revolutions was authored by Dudley Shapere, a philosopher who interpreted Kuhn's work as a continuation of the anti-positivist sentiment of other philosophers of science, including Paul Feyerabend and Norwood Russell Hanson. Shapere noted the book's influence on the philosophical landscape of the time, calling it "a sustained attack on the prevailing image of scientific change as a linear process of ever-increasing knowledge".[31] According to the philosopher Michael Ruse, Kuhn discredited the ahistorical and prescriptive approach to the philosophy of science of Ernest Nagel's The Structure of Science (1961).[32] Kuhn's book sparked a historicist "revolt against positivism" (the so-called "historical turn in philosophy of science" which looked to the history of science as a source of data for developing a philosophy of science),[33] although this may not have been Kuhn's intention; in fact, he had already approached the prominent positivist Rudolf Carnap about having his work published in the International Encyclopedia of Unified Science.[34] The philosopher Robert C. Solomon noted that Kuhn's views have often been suggested to have an affinity to those of Georg Wilhelm Friedrich Hegel.[35] Kuhn's view of scientific knowledge, as expounded in The Structure of Scientific Revolutions, has been compared to the views of the philosopher Michel Foucault.[36]

Sociology

The first field to claim descent from Kuhn's ideas was the sociology of scientific knowledge.[37] Sociologists working within this new field, including Harry Collins and Steven Shapin, used Kuhn's emphasis on the role of non-evidential community factors in scientific development to argue against logical empiricism, which discouraged inquiry into the social aspects of scientific communities. These sociologists expanded upon Kuhn's ideas, arguing that scientific judgment is determined by social factors, such as professional interests and political ideologies.[38]

Barry Barnes detailed the connection between the sociology of scientific knowledge and Kuhn in his book T. S. Kuhn and Social Science.[39] In particular, Kuhn's ideas regarding science occurring within an established framework informed Barnes's own ideas regarding finitism, a theory wherein meaning is continuously changed (even during periods of normal science) by its usage within the social framework.[40][41]

The Structure of Scientific Revolutions elicited a number of reactions from the broader sociological community. Following the book's publication, some sociologists expressed the belief that the field of sociology had not yet developed a unifying paradigm, and should therefore strive towards homogenization. Others argued that the field was in the midst of normal science, and speculated that a new revolution would soon emerge. Some sociologists, including John Urry, doubted that Kuhn's theory, which addressed the development of natural science, was necessarily relevant to sociological development.[42]

Economics

Developments in the field of economics are often expressed and legitimized in Kuhnian terms. For instance, neoclassical economists have claimed "to be at the second stage [normal science], and to have been there for a very long time – since Adam Smith, according to some accounts (Hollander, 1987), or Jevons according to others (Hutchison, 1978)".[43] In the 1970s, post-Keynesian economists denied the coherence of the neoclassical paradigm, claiming that their own paradigm would ultimately become dominant.[43]

While perhaps less explicit, Kuhn's influence remains apparent in recent economics. For instance, the abstract of Olivier Blanchard's paper "The State of Macro" (2008) begins:

For a long while after the explosion of macroeconomics in the 1970s, the field looked like a battlefield. Over time however, largely because facts do not go away, a largely shared vision both of fluctuations and of methodology has emerged. Not everything is fine. Like all revolutions, this one has come with the destruction of some knowledge, and suffers from extremism and herding.

— Blanchard (2009, p. 1)

Political science

In 1974, The Structure of Scientific Revolutions was ranked as the second most frequently used book in political science courses focused on scope and methods.[44] In particular, Kuhn's theory has been used by political scientists to critique behavioralism, which claims that accurate political statements must be both testable and falsifiable.[45] The book also proved popular with political scientists embroiled in debates about whether a set of formulations put forth by a political scientist constituted a theory, or something else.[46]

The changes that occur in politics, society and business are often expressed in Kuhnian terms, however poor their parallel with the practice of science may seem to scientists and historians of science. The terms "paradigm" and "paradigm shift" have become such notorious clichés and buzzwords that they are sometimes viewed as effectively devoid of content.[47][48]


This content is from Wikipedia. GradeSaver is providing this content as a courtesy until we can offer a professionally written study guide by one of our staff editors. We do not consider this content professional or citable. Please use your discretion when relying on it.