University Physics with Modern Physics (14th Edition)

Published by Pearson
ISBN 10: 0321973615
ISBN 13: 978-0-32197-361-0

Chapter 43 - Nuclear Physics - Problems - Exercises - Page 1475: 43.9

Answer

$(a)$ $ E_K = 3.044 \times 10^{-13} J = 1.902 MeV$ $(b)$ $ v= 1.35 \times 10^7 m/s$

Work Step by Step

$(a)$ The total energy of photon is calculated as follows $ E = \frac{hc}{\lambda} $ $ E = \frac{(6.626 \times10^{-34} J.s)(2.99 \times 10^8 m/s)}{3.00 \times 10^{-13} m}$ $E = 6.604 \times 10^{-13}J $ The energy equation of photon goes by $ E = E_K +E_B$. And the binding energy of a deuteron is $2.224 MeV$ $E_B = 2.224 MeV \times 1.6 \times 10^{-19} J/eV$ $E_B =3.56 \times 10^{-13} J$ The kinetic energy is $ E_K = E - E_B$. $ E_K = 6.604 \times 10^{-13}J - 3.56 \times 10^{-13} J $ $ E_K = 3.044 \times 10^{-13} J $ $ E_K = 1.902 MeV$ $(b)$ The particles shared the energy, taking kinetic energy from (a) and solve for the velocity, gives $E_K/2 = \frac{1}{2} mv^2$ $v= \sqrt{\frac{2E_K/2}{m}}$ $v= \sqrt{\frac{3.044 \times 10^{-13} J }{1.6605 \times 10^{-27} kg}}$ $v= 1.35 \times 10^7 m/s$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.