Thermodynamics: An Engineering Approach 8th Edition

Published by McGraw-Hill Education
ISBN 10: 0-07339-817-9
ISBN 13: 978-0-07339-817-4

Chapter 7 - Entropy - Problems - Page 406: 7-122

Answer

$\eta=89.5\%$

Work Step by Step

For isentropic processes on ideal gases: $\dfrac{T_{2,s}}{T_1}=\left(\dfrac{P_{2,s}}{P_1}\right)^\dfrac{k-1}{k}$ Given $T_1=300\ K,\ P_1=100\ kPa,\ k=1.260,\ P_{2,s}=600\ kPa$: $T_{2,s}=434.2\ K$ Efficiency: $\eta=\dfrac{w_s}{w_a}=\dfrac{h_{2,s}-h_1}{h_{2,a}-h_1}=\dfrac{c_p(T_{2,s}-T_1)}{c_p(T_{2,a}-T_1)}$ $\eta=\dfrac{T_{2,s}-T_1}{T_{2,a}-T_1}$ Given $T_{2,a}=450\ K$ $\eta=89.5\%$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.