Thermodynamics: An Engineering Approach 8th Edition

Published by McGraw-Hill Education
ISBN 10: 0-07339-817-9
ISBN 13: 978-0-07339-817-4

Chapter 4 - Energy Analysis of Closed Systems - Problems - Page 199: 4-38

Answer

$\Delta t = 30.82\ min$

Work Step by Step

Energy balance for the whole system: $Q_{rad}-Q_{lost} = \Delta U_{air} + \Delta H_{oil}$ With: $Q_{rad} = 2.4\ kW\times \Delta t,\ Q_{lost} = 0.35\ kW\times \Delta t$ $ \Delta U_{air} = m_{air}c_{v,air}\Delta T_{air},\ \Delta H_{oil} = m_{oil}c_{p,oil}\Delta T_{oil}$ For the oil $V=40\ L,\ \rho=950\ kg/m³,\ c_p=2.2\ kJ/kg.°C,\ \Delta T=40°C$: $m = 38 kg$ $\Delta H_{oil} = 3344\ kJ$ For the air $R=0.2870 kJ/kg.K,\ P_1=101.325\ kPa,\ V=50\ m³$, $T_1=10°C=283.15\ K, c_v=0.718\ kJ/kg.°C,\ \Delta T_{air}=10°C$: $m_{air}=\frac{PV}{RT} = 62.34\ kg$ $ \Delta U_{air}=447.62\ kJ$ Therefore: $\Delta t = \frac{3791.6\ kJ}{2.05\ kW} = 1849.56\ s\times \frac{1\ min}{60\ s}$ $\Delta t = 30.82\ min$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.