Thermodynamics: An Engineering Approach 8th Edition

Published by McGraw-Hill Education
ISBN 10: 0-07339-817-9
ISBN 13: 978-0-07339-817-4

Chapter 2 - Energy, Energy Transfer, and General Energy Analysis - Problems - Page 106: 2-116

Answer

$m_{sulfur}=0.014\frac{kg}{h}$ $m_{H_{2}SO_{3}}=0.0359\frac{kg}{h}$

Work Step by Step

First we calculate the rate of fuel entering the engine: $m_{fuel}=\frac{m_{air}}{ratio_{air-fuel}}=\frac{336\frac{kg}{h}}{18\frac{kg_{air}}{kg_{fuel}}}=18.67\frac{kg}{h}$ And the mass of sulfur in this fuel will be: $m_{sulfur}=18.67\frac{kg}{h}*750ppm=0.014\frac{kg}{h}$ Knowing this molar masses: H: $2*1\frac{kg}{kmol}=2\frac{kg}{kmol}$ S: $1*32\frac{kg}{kmol}=32\frac{kg}{kmol}$ O: $3*16\frac{kg}{kmol}=48\frac{kg}{kmol}$ Then the molar mass of the sulfurous acid is: $M_{H_{2}SO_{3}}=2\frac{kg}{kmol}+32\frac{kg}{kmol}+48\frac{kg}{kmol}=82\frac{kg}{kmol}$ And the flow rate of sulfurous acid added to the environment for each kmol is: $m_{H_{2}SO_{3}}=\frac{M_{H_{2}SO_{3}}}{M_{sulfur}}m_{sulfur}=\frac{82\frac{kg}{kmol}}{32\frac{kg}{kmol}}*0.014\frac{kg}{h}=0.0359\frac{kg}{h}$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.