Thermodynamics: An Engineering Approach 8th Edition

Published by McGraw-Hill Education
ISBN 10: 0-07339-817-9
ISBN 13: 978-0-07339-817-4

Chapter 11 - Refrigeration Cycles - Problems - Page 646: 11-77

Answer

$\operatorname{COP}_{\mathrm{R}} =1.56$ $\dot{Q}_{\text {Refrig }}=0.124\text{ kg/s}$

Work Step by Step

From the isentropic relations, $$ \begin{aligned} & T_2=T_1\left(\frac{P_2}{P_1}\right)^{(k-1) / k}=(249 \mathrm{~K})(3)^{0.4 / 1.4}=340.8 \mathrm{~K} \\ & T_4=T_3\left(\frac{P_4}{P_3}\right)^{(k-1) / k}=(278 \mathrm{~K})(3)^{0.4 / 1.4}=380.5 \mathrm{~K} \\ & T_6=T_5\left(\frac{P_6}{P_5}\right)^{(k-1) / k}=(278 \mathrm{~K})\left(\frac{1}{9}\right)^{0.4 / 1.4}=148.4 \mathrm{~K} \end{aligned} $$ The COP of this ideal gas refrigeration cycle is determined from $$ \begin{aligned} \operatorname{COP}_{\mathrm{R}} & =\frac{q_L}{w_{\text {net,in }}}=\frac{q_L}{w_{\text {comp in }}-w_{\text {turb,out }}} \\ & =\frac{h_1-h_6}{\left(h_2-h_1\right)+\left(h_4-h_3\right)-\left(h_5-h_6\right)} \\ & =\frac{T_1-T_6}{\left(T_2-T_1\right)+\left(T_4-T_3\right)-\left(T_5-T_6\right)} \\ & =\frac{249-148.4}{(340.8-249)+(380.5-278)-(278-148.4)} \\ & =\mathbf{1 . 5 6} \end{aligned} $$ The mass flow rate of the air is determined from $$ \dot{Q}_{\text {Refrig }}=\dot{m} c_p\left(T_1-T_6\right) \longrightarrow \dot{m}=\frac{\dot{Q}_{\text {Refrig }}}{c_p\left(T_1-T_6\right)}=\frac{(45,000 / 3600) \mathrm{kJ} / \mathrm{s}}{(1.005 \mathrm{~kJ} / \mathrm{kg} \cdot \mathrm{K})(249-148.4) \mathrm{K}}=\mathbf{0 . 1 2 4 \mathrm { kg } / \mathrm { s }} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.