Thermodynamics: An Engineering Approach 8th Edition

Published by McGraw-Hill Education
ISBN 10: 0-07339-817-9
ISBN 13: 978-0-07339-817-4

Chapter 11 - Refrigeration Cycles - Problems - Page 646: 11-69

Answer

b) $\mathrm{COP}_{\mathrm{R}}=2.74$ c) $\dot{Q}_{\text {refrig }}=2.49\text{ kJ/s}$

Work Step by Step

(a) We assume both the turbine and the compressor to be isentropic, the turbine inlet temperature to be the temperature of the surroundings, and the compressor inlet temperature to be the temperature of the refrigerated space. From the air table (Table A-17)$$ \begin{aligned} & T_1=250 \mathrm{~K} \longrightarrow h_1=250.05 \mathrm{~kJ} / \mathrm{kg} \\ & P_{r_1}=0.7329 \\ & T_1=300 \mathrm{~K} \quad \longrightarrow \quad h_3=300.19 \mathrm{~kJ} / \mathrm{kg} \\ & P_{r_3}=1.386 \end{aligned} $$ Thus, $$ \begin{aligned} P_{r_2}=\frac{P_2}{P_1} P_{r_1}=(3)(0.7329)=2.1987 \longrightarrow T_2 & =T_{\max }=342.2 \mathrm{~K} \\ h_2 & =342.60 \mathrm{~kJ} / \mathrm{kg} \\ P_{r_4}=\frac{P_4}{P_3} P_{r_3}=\left(\frac{1}{3}\right)(1.386)=0.462 \longrightarrow T_4 & =T_{\min }=219.0 \mathrm{~K} \\ h_4 & =218.97 \mathrm{~kJ} / \mathrm{kg} \end{aligned} $$ (b) The COP of this ideal gas refrigeration cycle is determined from $$ \mathrm{COP}_{\mathrm{R}}-\frac{q_L}{w_{\text {net, in }}}-\frac{q_L}{w_{\text {comp, in }}-w_{\text {turb, out }}} $$ where $$ \begin{aligned} q_L & =h_1-h_4=250.05-218.97=31.08 \mathrm{~kJ} / \mathrm{kg} \\ w_{\text {comp, in }} & =h_2-h_1=342.60-250.05=92.55 \mathrm{~kJ} / \mathrm{kg} \\ w_{\text {turb, out }} & =h_3-h_4=300.19-218.97=81.22 \mathrm{~kJ} / \mathrm{kg} \end{aligned} $$ Thus, $$ \mathrm{COP}_{\mathrm{R}}=\frac{31.08}{92.55-81.22}=\mathbf{2 . 7 4} $$ (c) The rate of refrigeration is determined to be $$ \dot{Q}_{\text {refrig }}=\dot{m}\left(q_L\right)=(0.08 \mathrm{~kg} / \mathrm{s})(31.08 \mathrm{~kJ} / \mathrm{kg})=\mathbf{2 . 4 9} \mathbf{k J} / \mathbf{s} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.