Thermodynamics: An Engineering Approach 8th Edition

Published by McGraw-Hill Education
ISBN 10: 0-07339-817-9
ISBN 13: 978-0-07339-817-4

Chapter 11 - Refrigeration Cycles - Problems - Page 643: 11-45E

Answer

$0.7457\text{ KW}$

Work Step by Step

In an ideal vapor-compression refrigeration cycle, the compression process is isentropic, the refrigerant enters the compressor as a saturated vapor at the evaporator pressure, and leaves the condenser as saturated liquid at the condenser pressure. From the refrigerant tables: $$ \begin{aligned} & P_1=50\ \mathrm{psia} \quad h_1=h_{g @ 50 \mathrm{psia}}=108.83\ \mathrm{Btu} / \mathrm{lbm} \\ & \text { sat. vapor }\} s_1=s_{g @ 50 p s i a}=0.22192\ \mathrm{Btu} / \mathrm{lbm} \cdot \mathrm{R} \\ & \left.\begin{array}{l} P_2=120\ \mathrm{psia} \\ s_2=s_1 \end{array}\right\} h_2=116.64\ \mathrm{Btu} / \mathrm{lbm} \\ & \left.\begin{array}{l} P_3=120 \text { psia } \\ \text { sat. liquid } \end{array}\right\} h_3=h_{f @ 120 \text { psia }}=41.79\ \mathrm{Btu} / \mathrm{lbm} \\ & h_4 \cong h_3=41.79\ \mathrm{Btu} / \mathrm{lbm} \text { } \end{aligned} $$ The mass flow rate of the refrigerant and the power input to the compressor are determined from $$ \dot{m}=\frac{\dot{Q}_H}{q_H}=\frac{\dot{Q}_H}{h_2-h_3}=\frac{60,000 / 3600 \mathrm{Btu} / \mathrm{s}}{(116.64-41.79) \mathrm{Btu} / \mathrm{lbm}}=0.2227\ \mathrm{lbm} / \mathrm{s} $$ $$ \begin{aligned} \dot{W}_{\text {in }} & =\dot{m}\left(h_2-h_1\right)=(0.2227 \mathrm{~kg} / \mathrm{s})(116.64-108.83) \mathrm{Btu} / \mathrm{lbm} \\ & =1.739\ \mathrm{Btu} / \mathrm{s}=\mathbf{2 . 4 6} \mathrm{hp} \text { since } 1 \mathrm{hp}=0.7068\ \mathrm{Btu} / \mathrm{s} \end{aligned} $$ The electrical power required without the heat pump is $$ \dot{W}_e=\dot{Q}_H=(60,000 / 3600 \mathrm{Btu} / \mathrm{s})\left(\frac{1 \mathrm{hp}}{0.7068 \mathrm{Btu} / \mathrm{s}}\right)=23.58\ \mathrm{hp} $$ $$ \begin{aligned} \dot{W}_{\text {saved }} & =\dot{W}_e-\dot{W}_{\text {in }}=23.58-2.46 \\ & =\mathbf{2 1 . 1} \mathbf{h p}=15.75 \mathrm{~kW} \text { since } 1 \mathrm{hp}=0.7457 \mathrm{~kW} \end{aligned} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.