Thermodynamics: An Engineering Approach 8th Edition

Published by McGraw-Hill Education
ISBN 10: 0-07339-817-9
ISBN 13: 978-0-07339-817-4

Chapter 11 - Refrigeration Cycles - Problems - Page 642: 11-33

Answer

a) $V_{1}=7.87\text{ L/s}$ b) $ \dot{W}_{\text {in }}=4.75\text{ kW}$ $COP_{y}=2.79$ c) $\dot{E} x_{\dot{Q}_L}=1.81\text{ kW}$ $\dot{E} x_{\text {dest, }, \text { tatal }}=2.94\text{ kW}$

Work Step by Step

(a) The properties of ammonia are given in problem statement. An energy balance on the condenser gives $$ \begin{aligned} & q_H=h_1-h_4=1439.3-437.4=1361 \mathrm{~kJ} / \mathrm{kg} \\ & \dot{m}=\frac{\dot{Q}_H}{q_H}=\frac{18 \mathrm{~kW}}{1361 \mathrm{~kJ} / \mathrm{kg}}=0.01323 \mathrm{~kg} / \mathrm{s} \end{aligned} $$ The volume flow rate is determined from $$ \begin{aligned} \dot{V}_1 & =m v_1=(0.01323 \mathrm{~kg} / \mathrm{s})\left(0.5946 \mathrm{~m}^3 / \mathrm{kg}\right) \\ & =0.007865 \mathrm{~m}^3 / \mathrm{s}=7.87 \mathrm{~L} / \mathrm{s} \end{aligned} $$ (b) The power input and the $\mathrm{COP}$ are $$ \begin{aligned} & \dot{W}_{\text {in }}=\dot{m}\left(h_2-h_1\right)=(0.01323 \mathrm{~kg} / \mathrm{s})(1798.3-1439.3) \mathrm{kJ} / \mathrm{kg}=\mathbf{4 . 7 5} \mathrm{kW} \\ & \dot{Q}_L=\dot{m}\left(h_1-h_4\right)=(0.01323 \mathrm{~kg} / \mathrm{s})(1439.3-437.4) \mathrm{kJ} / \mathrm{kg}=13.25 \mathrm{~kW} \\ & \mathrm{COP}=\frac{\dot{Q}_L}{\dot{W}_{\text {in }}}=\frac{13.25 \mathrm{~kW}}{4.75 \mathrm{~kW}}=\mathbf{2 . 7 9} \end{aligned} $$ (c) The exergy of the heat transferred from the low-temperature medium is $$ \dot{E} x_{\dot{Q}_L}=-\dot{Q}_L\left(1-\frac{T_0}{T_L}\right)=-(13.25 \mathrm{~kW})\left(1-\frac{300}{264}\right)=1.81 \mathrm{~kW} $$ The second-law efficiency of the cycle is $$ \eta_{\mathrm{I}}=\frac{\dot{E} x_{\dot{Q}_{\perp}}}{\dot{W}_{\mathrm{in}}}=\frac{1.81}{4.75}=0.381=\mathbf{3 8 . 1} \% $$ The total exergy destruction in the cycle is the difference between the exergy supplied (power input) and the exergy recovered (the exergy of the heat transferred from the low-temperature medium): $$ \dot{E} x_{\text {dest }, \text { total }}=\dot{W}_{\text {in }}-\dot{E} x_{\dot{Q}_L}=4.75-1.81=\mathbf{2 . 9 4}\ \mathbf{kW} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.