Thermodynamics: An Engineering Approach 8th Edition

Published by McGraw-Hill Education
ISBN 10: 0-07339-817-9
ISBN 13: 978-0-07339-817-4

Chapter 11 - Refrigeration Cycles - Problems - Page 640: 11-19

Answer

a) $\dot m=0.04200\text{ kg/s}$ $\dot{W}_{\text {in }}= 2.40\text{ kW}$ b) $\dot{Q}_L=6.17\text{ kW}$ c) $\dot{Q}_{\text {gain }}=0.203\text{ kW}$

Work Step by Step

(a) From the refrigerant tables (Tables A-12 and A-13), $$ \begin{aligned} & \left.\begin{array}{l} P_1=100\ \mathrm{kPa} \\ T_1=-20^{\circ} \mathrm{C} \end{array}\right\} \begin{array}{l} h_1=239.52 \mathrm{~kJ} / \mathrm{kg} \\ s_1=0.97215 \mathrm{~kJ} / \mathrm{kg} \cdot \mathrm{K} \\ v_1=0.19841 \mathrm{~m}^3 / \mathrm{kg} \end{array} \\ & \left.\begin{array}{l} P_2=0.8\ \mathrm{MPa} \\ s_{2 s}=s_1 \end{array}\right\} h_{2 s}=284.09 \mathrm{~kJ} / \mathrm{kg} \\ & \left.\begin{array}{l} P_3=0.75 \mathrm{MPa} \\ T_3=26^{\circ} \mathrm{C} \end{array}\right\} h_3 \cong h_{f @ 26^{\circ} \mathrm{C}}=87.83 \mathrm{~kJ} / \mathrm{kg} \\ & h_4 \cong h_3=87.83 \mathrm{~kJ} / \mathrm{kg} \text { (throttling) } \\ & \left.T_5=-26^{\circ} \mathrm{C}\right\rangle P_5=0.10173\ \mathrm{MPa} \\ & \text { sat. vapor }\} h_5=234.70 \mathrm{~kJ} / \mathrm{kg} \end{aligned} $$ Then the mass flow rate of the refrigerant and the power input becomes $$ \begin{aligned} \dot{m} & =\frac{\dot{V_1}}{v_1}=\frac{0.5 / 60 \mathrm{~m}^3 / \mathrm{s}}{0.19841 \mathrm{~m}^3 / \mathrm{kg}}=0.04200 \mathrm{~kg} / \mathrm{s} \\ \dot{W}_{\text {in }} & =\dot{m}\left(h_{2 s}-h_1\right) / \eta_C=(0.04200 \mathrm{~kg} / \mathrm{s})((284.09-239.52) \mathrm{kJ} / \mathrm{kg}] /(0.78)=2.40 \mathrm{~kW} \end{aligned} $$ (b) The rate of heat removal from the refrigerated space is $$ \dot{Q}_L=\dot{m}\left(h_5-h_4\right)=(0.04200 \mathrm{~kg} / \mathrm{s})(234.70-87.83) \mathrm{kJ} / \mathrm{kg}=6.17 \mathrm{~kW} $$ (c) The pressure drop and the heat gain in the line between the evaporator and the compressor are $$ \Delta P=P_5-P_1=101.73-100=\mathbf{1 . 7 3} $$ and $$ \dot{Q}_{\text {gain }}=\dot{m}\left(h_1-h_5\right)=(0.04200 \mathrm{~kg} / \mathrm{s})(239.52-234.70) \mathrm{kJ} / \mathrm{kg}=\mathbf{0 . 2 0 3} \mathbf{~ k W} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.