Thermodynamics: An Engineering Approach 8th Edition

Published by McGraw-Hill Education
ISBN 10: 0-07339-817-9
ISBN 13: 978-0-07339-817-4

Chapter 11 - Refrigeration Cycles - Problems - Page 640: 11-17

Answer

a) $\dot{Q}_L=9.416\text{ kW}$, $\dot{W}_{\text {in }}=3.627\text{ kW}$ b) $74.1\%$ c) $\mathrm{COP}_{\mathrm{R}}=2.60$

Work Step by Step

(a) From the refrigerant tables (Tables A-12 and A-13),$$ \begin{aligned} & \left.\begin{array}{l} P_1=0.20\ \mathrm{MPa} \\ T_1=-5^{\circ} \mathrm{C} \end{array}\right\} \begin{array}{l} h_1=248.82 \mathrm{~kJ} / \mathrm{kg} \\ s_1=0.95414 \mathrm{~kJ} / \mathrm{kg} \cdot \mathrm{K} \end{array} \\ & \left.\begin{array}{l} P_2=1.2\ \mathrm{MPa} \\ T_2=70^{\circ} \mathrm{C} \end{array}\right\} h_2=300.63 \mathrm{~kJ} / \mathrm{kg} \\ & \left.\begin{array}{l} P_{2 s}=1.2\ \mathrm{MPa} \\ s_{2 s}=s_1 \end{array}\right\} h_{2 s}=287.23 \mathrm{~kJ} / \mathrm{kg} \\ & \left.\begin{array}{l} P_3=1.15\ \mathrm{MPa} \\ T_3=44^{\circ} \mathrm{C} \end{array}\right\} h_3=h_{f @ 44^{\circ} \mathrm{C}}=114.30 \mathrm{~kJ} / \mathrm{kg} \\ & h_4 \cong h_3=114.30 \mathrm{~kJ} / \mathrm{kg}(\text { throttling }) \end{aligned} $$ Then the rate of heat removal from the refrigerated space and the power input to the compressor are determined from $$ \dot{Q}_L=\dot{m}\left(h_1-h_4\right)=(0.07 \mathrm{~kg} / \mathrm{s})(248.82-114.30) \mathrm{kJ} / \mathrm{kg}=9.416\ \mathbf{k W} $$ and $$ \dot{W}_{\text {in }}=\dot{m}\left(h_2-h_1\right)=(0.07 \mathrm{~kg} / \mathrm{s})(300.63-248.82) \mathrm{kJ} / \mathrm{kg}=\mathbf{3 . 6 2 7}\ \mathbf{k W} $$ (b) The isentropic efficiency of the compressor is determined from $$ \eta_C=\frac{h_{2 s}-h_1}{h_2-h_1}=\frac{287.23-248.82}{300.63-248.82}=0.7414=\mathbf{7 4 . 1} \% $$ (c) The COP of the refrigerator is determined from its definition, $$ \mathrm{COP}_{\mathrm{R}}=\frac{\dot{Q}_L}{\dot{W}_{\text {in }}}=\frac{9.416 \mathrm{~kW}}{3.627 \mathrm{~kW}}=\mathbf{2 . 6 0} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.