Physics: Principles with Applications (7th Edition)

Published by Pearson
ISBN 10: 0-32162-592-7
ISBN 13: 978-0-32162-592-2

Chapter 33 - Astrophysics and Cosmology - Problems - Page 982: 38

Answer

(a) $$ \approx 2.1 \times 10^{-26} \mathrm{kg} / \mathrm{m}^{3}$$ ---- (b) $$\rho_{\mathrm{dark}} \approx \left|1.0 \times 10^{-25} \mathrm{kg} / \mathrm{m}^{3}\right|$$

Work Step by Step

(a) note that The data in the Problem are for visible matter only (stars and galaxies). $$\rho_{\text {baryon }}=10 \times \rho_{\text {visible }}=10 \times \frac{M_{\text {visible }}}{\frac{4}{3} \times \pi \times R^{3}}$$ $$=10 \frac{\left(10^{11} \text { galaxies }\right)\left(10^{11} \text { stars/galaxy }\right)\left(2.0 \times 10^{30} \mathrm{kg} / \mathrm{star}\right)}{\frac{4}{3} \pi\left[\left(14 \times 10^{9} \mathrm{ly}\right)\left(9.46 \times 10^{15} \mathrm{m} / \mathrm{ly}\right)\right]^{3}} \approx $$ $$ \approx 2.1 \times 10^{-26} \mathrm{kg} / \mathrm{m}^{3}$$ ---- (b) Again, according to the text, dark matter is about 5 times more plentiful than baryonic matter $$\rho_{\mathrm{dark}}=5\times \rho_{\mathrm{baryon}}=5 \times \left(2.055 \times 10^{-26} \mathrm{kg} / \mathrm{m}^{3}\right) \approx\left|1.0 \times 10^{-25} \mathrm{kg} / \mathrm{m}^{3}\right|$$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.