Answer
(a)
$$Q=9.594\ \mathrm{MeV}$$
_______________________________________________________
(b)
$$\mathrm{KE}_{\text {nucleus }}=7.61\ \mathrm{MeV}$$
_________________________________________________________
(c)
$$k T= 8.82 \times 10^{10} \mathrm{K}$$
Work Step by Step
(a)
From Eq. $30–2$, the $Q-value$ is the mass energy of the reactants minus the mass energy of the products.
$$_{8}^{16} \mathrm{C}+_{8}^{16} \mathrm{C} \rightarrow_{14}^{28} \mathrm{Si}+_{2}^{4} \mathrm{He}$$
$$Q=2 m_{\mathrm{C}} c^{2}-m_{\mathrm{Si}} c^{2}-m_{\mathrm{He}} c^{2} $$
$$=[2(15.994915 \mathrm{u})-27.976927 \mathrm{u}-4.002603] c^{2}\left(931.5 \mathrm{Mev} / c^{2}\right)$$
$$=9.594\ \mathrm{MeV}$$
_______________________________________________________
(b)
The distance between the two nuclei will be twice the nuclear radius, from Eq. $30–1$. Each nucleus will have half the total kinetic energy.
$$r=\left(1.2 \times 10^{-15} \mathrm{m}\right)(A)^{1 / 3}=\left(1.2 \times 10^{-15} \mathrm{m}\right)(16)^{1 / 3} ; $$
$$\quad \mathrm{PE}=\frac{1}{4 \pi \varepsilon_{0}} \frac{q_{\text {nucleus }}^{2}}{2 r}$$
$$\mathrm{KE}_{\text {nucleus }}=\frac{1}{2} \mathrm{PE}=\frac{1}{2} \frac{1}{4 \pi \varepsilon_{0}} \frac{q_{\text {nucleus }}^{2}}{2 r}$$
$$=\frac{1}{2}\left(8.988 \times 10^{9} \mathrm{N} \cdot \mathrm{m}^{2} / \mathrm{C}^{2}\right) \frac{(8)^{2}\left(1.60 \times 10^{-19} \mathrm{C}\right)^{2}}{2\left(1.2 \times 10^{-15} \mathrm{m}\right)(16)^{1 / 3}} \times \frac{1 \mathrm{eV}}{1.60 \times 10^{-19} \mathrm{J}}$$
$$=7.61\ \mathrm{MeV}$$
_________________________________________________________
(c)
Approximate the temperature-kinetic energy relationship by $k T=\mathrm{KE},$ as given in Section $33-7$
$$k T=\mathrm{KE} \rightarrow T=$$
$$\frac{\mathrm{KE}}{k}=\frac{\left(7.61 \times 10^{6} \mathrm{eV}\right)\left(\frac{1.60 \times 10^{-19} \mathrm{J}}{1 \mathrm{eV}}\right)}{1.38 \times 10^{-23} \mathrm{JK}}$$
$$= 8.82 \times 10^{10} \mathrm{K}$$