Physics: Principles with Applications (7th Edition)

Published by Pearson
ISBN 10: 0-32162-592-7
ISBN 13: 978-0-32162-592-2

Chapter 33 - Astrophysics and Cosmology - General Problems - Page 983: 49

Answer

(a) $$Q=13.93\ \mathrm{MeV}$$ ___________________________________________________________ (b) $$\mathrm{KE}_{\text {nucleus }}=4.71\ \mathrm{MeV}$$ ____________________________________________________________ (c) $$k T= 5.46 \times 10^{10} \mathrm{K}$$

Work Step by Step

(a) From Eq. $30–2$, the $Q-value$ is the mass energy of the reactants minus the mass energy of the products. $$_{6}^{12} \mathrm{C}+_{6}^{12} \mathrm{C} \rightarrow_{12}^{24} \mathrm{Mg}$$ $$Q=2 m_{\mathrm{C}} c^{2}-m_{\mathrm{Mg}} c^{2}=$$ $$[2(12.000000 \mathrm{u})-23.985042 \mathrm{u}] c^{2}\left(931.5 \mathrm{MeV} / c^{2}\right)=13.93\ \mathrm{MeV}$$ ____________________________________________________________ (b) The distance between the two nuclei will be twice the nuclear radius, from Eq. $30–1$. Each nucleus will have half the total kinetic energy. $$r=\left(1.2 \times 10^{-15} \mathrm{m}\right)(A)^{1 / 3}=\left(1.2 \times 10^{-15} \mathrm{m}\right)(12)^{1 / 3}\ ;$$ $$ \quad \mathrm{PE}=\frac{1}{4 \pi \varepsilon_{0}} \frac{q_{\text {nucleus }}^{2}}{2 r}$$ $$\mathrm{KE}_{\text {nucleus }}=\frac{1}{2} \mathrm{PE}=\frac{1}{2} \frac{1}{4 \pi \varepsilon_{0}} \frac{q_{\text {nucleus }}^{2}}{2 r}$$ $$=\frac{1}{2}\left(8.988 \times 10^{9} \mathrm{N} \cdot \mathrm{m}^{2} / \mathrm{C}^{2}\right) \frac{(6)^{2}\left(1.60 \times 10^{-19} \mathrm{C}\right)^{2}}{2\left(1.2 \times 10^{-15} \mathrm{m}\right)(12)^{1 / 3}} \times \frac{1 \mathrm{eV}}{1.60 \times 10^{-19} \mathrm{J}}$$ $$=4.71\ \mathrm{MeV}$$ ____________________________________________________________ (c) Approximate the temperature-kinetic energy relationship by $k T=\mathrm{KE},$ as given in Section $33-7$\ $$k T=\mathrm{KE} \rightarrow T=\frac{\mathrm{KE}}{k}$$ $$=\frac{\left(4.71 \times 10^{6} \mathrm{eV}\right)\left(\frac{1.60 \times 10^{-19} \mathrm{J}}{1 \mathrm{eV}}\right)}{1.38 \times 10^{-23} \mathrm{J} / \mathrm{K}} $$ $$= 5.46 \times 10^{10} \mathrm{K}$$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.