Physics: Principles with Applications (7th Edition)

Published by Pearson
ISBN 10: 0-32162-592-7
ISBN 13: 978-0-32162-592-2

Chapter 33 - Astrophysics and Cosmology - General Problems - Page 982: 45

Answer

$\text{see the solution below}$

Work Step by Step

in this problem we use the given density and the Sun’s mass to calculate the size of the Sun. $$\rho=\frac{M}{V}=\frac{M}{\frac{4}{3} \pi r_{\mathrm{Sun}}^{3}} \rightarrow$$ $$r_{\mathrm{Sun}}=\left(\frac{3 M}{4 \pi \rho}\right)^{1 / 3}=\left[\frac{3\left(1.99 \times 10^{30} \mathrm{kg}\right)}{4 \pi\left(10^{-26} \mathrm{kg} / \mathrm{m}^{3}\right)}\right]^{1 / 3}$$ $$= 3.62 \times 10^{18} \mathrm{m}\left(\frac{1 \mathrm{ly}}{9.46 \times 10^{15} \mathrm{m}}\right)=382 \mathrm{ly} \approx[400 \mathrm{ly}]$$ and we continue our solution as following: $$\frac{r_{\mathrm{Sun}}}{d_{\mathrm{Earth}-\mathrm{Sun}}}=\frac{3.62 \times 10^{18} \mathrm{m}}{1.50 \times 10^{11} \mathrm{m}} \approx \frac{\sqrt{2 \times 10^{7}}}{d_{\mathrm{galaxy}}}= $$ $$\frac{382 \mathrm{ly}}{100,000 \mathrm{ly}} \approx \left[4 \times 10^{-3} \right]$$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.