Physics: Principles with Applications (7th Edition)

Published by Pearson
ISBN 10: 0-32162-592-7
ISBN 13: 978-0-32162-592-2

Chapter 32 - Elementary Particles - General Problems - Page 946: 54

Answer

$Q= -450 \;\rm MeV$ $KE_{\pi^-}= 767.808 \;\rm MeV$

Work Step by Step

The $Q$-value of the given reaction is given by $$Q=Q_{\pi^-}+Q_{\rm p}-Q_{\Lambda^0}-Q_{\rm K^0}$$ Thus, $$Q=(m_{\pi^-}+m_{\rm p}-m_{\Lambda^0}-m_{\rm K^0})c^2$$ Plugging the known (see table 32-2); $$Q= 135+ 938.3-1115.6-497.7 =\bf \color{red}{\bf -450}\;\rm MeV$$ Since $\pi^-$ hits the proton when it was at rest, so the initial kinetic energy of the proton is zero. And according to the conservation of energy; $$E_{\pi^-}+E_{\rm p}=E_{\Lambda^0}+E_{\rm K^0}$$ where $E_{\rm p}=\overbrace{KE_{\rm p}}^{0}+m_{\rm p}c^2$ $$E_{\pi^-}+m_{\rm p}c^2=E_{\Lambda^0}+E_{\rm K^0}\tag 1$$ Since the initial momentum is not zero, and since the two products are having the same speed, then the two products are moving in the same direction as one particle because the sum of their momentum must be equal to the initial momentum of $\pi^-$. Thus; $$m_{\rm proudcuts}=m_{\Lambda^0}+m_{\rm K^0}\tag 2$$ and hence, we can rewrite (1) as follows; $$E_{\pi^-}+m_{\rm p}c^2=E_{\rm products} \tag 3$$ Acording to the conservation of momentum; $$p_{\pi^-}=p_{\Lambda^0}+p_{\rm K^0}=p_{\rm proudcuts}$$ Multiplying both sides by $c$ and then squaring both sides. $$p^2_{\pi^-}c^2= p^2_{\rm proudcuts}c^2$$ where $p^2c^2=E^2-m^2c^4$. So that; $$E_{\pi^-}^2-m_{\pi^-}^2c^4= E_{\rm proudcuts}^2-m_{\rm proudcuts}^2c^4$$ Plugging from (3); $$E_{\pi^-}^2-m_{\pi^-}^2c^4= (E_{\pi^-}+m_{\rm p}c^2)^2-m_{\rm proudcuts}^2c^4$$ $$\color{red}{\bf\not}E_{\pi^-}^2-m_{\pi^-}^2c^4= \color{red}{\bf\not}E_{\pi^-}^2+2 m_{\rm p}c^2E_{\pi^-}+m^2_{\rm p}c^4 -m_{\rm proudcuts}^2c^4$$ Solving for $E_{\pi^-}$; $$ m_{\rm proudcuts}^2c^4 -m_{\pi^-}^2c^4-m^2_{\rm p}c^4 = 2 m_{\rm p}c^2E_{\pi^-} $$ $$ E_{\pi^-}=\dfrac{m_{\rm proudcuts}^2c^4 -m_{\pi^-}^2c^4-m^2_{\rm p}c^4 } { 2 m_{\rm p}c^2} $$ Recalling that $E_{\pi^-}=KE_{\pi^-}+m_{\pi^-}c^2 $, so that $$ KE_{\pi^-}+m_{\pi^-}c^2=\dfrac{m_{\rm proudcuts}^2c^4 -m_{\pi^-}^2c^4-m^2_{\rm p}c^4 } { 2 m_{\rm p}c^2} $$ Thus; $$ KE_{\pi^-}=\dfrac{m_{\rm proudcuts}^2c^4 -m_{\pi^-}^2c^4-m^2_{\rm p}c^4 } { 2 m_{\rm p}c^2} -m_{\pi^-}c^2$$ Plugging the known; $$ KE_{\pi^-}=\dfrac{(1115.6+497.7)^2 -139.6^2 - 938.3^2 } { 2\times 938.3} - 139.6$$ $$ KE_{\pi^-}=\color{red}{\bf 767.808}\;\rm MeV$$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.