Physics: Principles with Applications (7th Edition)

Published by Pearson
ISBN 10: 0-32162-592-7
ISBN 13: 978-0-32162-592-2

Chapter 22 - Electromagnetic Waves - General Problems - Page 643: 57

Answer

a) $2.78\times10^{-3 }\;\rm W$ b) $1.024\;\rm V/m$ c) $1.024\;\rm V $ d) $0.0205\;\rm V $

Work Step by Step

a) The power crossing an area is given by $$P=IA$$ where $I$ is the intensity which is given by $P_0/A_{tot}$, $A$ is the area, and $A_{tot}$ is the spherical area that its center is at the source. Thus, $$P=\dfrac{P_0A}{A_{tot}}=\dfrac{P_0A}{4\pi r^2}$$ Plugging the known; $$P= \dfrac{35\times10^3\cdot 1}{4\pi (1\times10^3)^2}$$ $$P= \color{red}{\bf 2.78\times10^{-3}}\;\rm W$$ ------------------ b) We know that the intensity is given by $$I=\frac{1}{2}\varepsilon cE^2=\dfrac{P}{A}$$ $$\frac{1}{2}\varepsilon cE^2=\dfrac{P}{4\pi r^2}$$ We also know that $E_{\rm rms}=E/\sqrt2$, thus $E=\sqrt2 E_{\rm rms}$. $$\frac{1}{2}\varepsilon c (\sqrt2 E_{\rm rms})^2=\dfrac{P}{4\pi r^2}$$ $$ \varepsilon c E_{\rm rms}^2=\dfrac{P}{4\pi r^2}$$ $$ E_{\rm rms}^2=\dfrac{P}{4\pi r^2 \varepsilon c }$$ $$ E_{\rm rms} =\sqrt{\dfrac{P}{4\pi r^2 \varepsilon c }}$$ Plugging the known; $$ E_{\rm rms} =\sqrt{\dfrac{35000}{4\pi (10^3)^2 \cdot 8.85\times10^{-12}\cdot 3\times10^8 }}$$ $$ E_{\rm rms} = \color{red}{\bf 1.024}\;\rm V/m$$ ------------------------------ c) We know that the RMS voltage is given by $$V_{\rm rms}=E_{\rm rms}d=1.024\cdot 1.0$$ $$V_{\rm rms}=\color{red}{\bf 1.024}\;\rm V $$ ------------------------------ d) At 50 km, we need to find the RMS electric field first and then find the RMS voltage. We can do that in one step. Using the formula from part b for $E_{\rm rms}$: $$ V_{\rm rms}=E_{\rm rms} d=\sqrt{\dfrac{35000}{4\pi (50\cdot 10^3)^2 \cdot 8.85\times10^{-12}\cdot 3\times10^8 }}\cdot 1.0$$ $$V_{\rm rms}=\color{red}{\bf 0.0205}\;\rm V $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.