Physics: Principles with Applications (7th Edition)

Published by Pearson
ISBN 10: 0-32162-592-7
ISBN 13: 978-0-32162-592-2

Chapter 22 - Electromagnetic Waves - General Problems - Page 643: 56

Answer

a) $9\times10^{-6}\;\rm N/m^2$ b) $9\times10^{-3}\;\rm m/s^2$ c) $1.25\times10^{4}\;\rm m^2$

Work Step by Step

a) We know that the radiation pressure, with total reflection, is given by $$P=\dfrac{2I_{avg}}{c}$$ Plugging the known; $$P=\dfrac{2\cdot 1350}{3\times10^8}=\color{red}{\bf 9\times10^{-6}\;}\rm N/m^2$$ ------------------------------------------------------------------------ b) We know that the force due to pressure is given by $P=\dfrac{F}{A}$, so $$F=PA$$ and according to Newton's second law, the net force exerted on an object is given by $F=ma$, so $$ma=PA\tag 1$$ Solving for $a$; $$a=\dfrac{PA}{m}=\dfrac{\frac{PA}{A}}{\frac{m}{A}}=\dfrac{P }{\frac{m}{A}}$$ Plugging the known; $$a=\dfrac{9\times10^{-6}}{1\times 10^-3 }=\color{red}{\bf9\times10^{-3}}\;\rm m/s^2$$ ------------------------------------------------------------------------ c) We need to find the area of the solar sail, so we need to use the pressure law we used above in (1). $$ma=PA$$ Solving for $A$; $$A=\dfrac{ma}{P}=\dfrac{(m_{s}+m_p)a}{P}$$ Noting that the mass $m_s$ is the mass of the solar sail and the mass $m_p$ is the mass of the payload. where $m_p=100$ kg and $m_s=10^{-3}A $ $$A= \dfrac{(10^{-3}A+100) a}{P}$$ Thus, $$PA= 10^{-3}Aa+100a $$ $$PA- 10^{-3}Aa=100a $$ $$A\left[P - 10^{-3} a\right]=100a $$ $$A =\dfrac{100a }{P - 10^{-3} a} $$ Plugging the known; $$A =\dfrac{100a }{P - 10^{-3} a} $$ Plugging the known; $$A =\dfrac{100\cdot 1\times10^{-3} }{(9\times10^{-6}) - (10^{-3} \cdot 1\times10^{-3})} $$ $$A =\color{red}{\bf 1.25\times10^{4}}\;\rm m^2$$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.