Physics: Principles with Applications (7th Edition)

Published by Pearson
ISBN 10: 0-32162-592-7
ISBN 13: 978-0-32162-592-2

Chapter 22 - Electromagnetic Waves - General Problems - Page 642: 53

Answer

a. $1.2\times10^{-10}J$. b. $8.7\times10^{-6}V/m$, $2.9\times10^{-14}T$.

Work Step by Step

a. Intensity is energy per unit time per unit area. Find the energy by multiplying the intensity, the area of the antenna, and the elapsed time. $$\Delta U=IA\Delta t$$ $$=(1.0\times10^{-13}W/m^2)(\pi(0.165m)^2)(4.0h)(3600s/h)=1.2\times10^{-10}J$$ b. The energy per unit area per unit time is the magnitude of the average intensity, equation 22–8. Find the amplitude of the electric field. $$\overline{I}=\frac{1}{2}\epsilon_ocE_o^2$$ $$E_o=\sqrt{\frac{2\overline{I}}{\epsilon_oc }}$$ $$E_o=\sqrt{\frac{2(1.0\times10^{-13}W/m^2)}{( (8.85\times10^{-12} C^2/(N\cdot m^2))(3.00\times10^8m/s) }}$$ $$\approx 8.7\times10^{-6}V/m$$ Now find the amplitude of the magnetic field. $$B_o=\frac{E_o}{c}=\frac{8.679\times10^{-6}V/m }{3.00\times10^8m/s }=2.9\times10^{-14}T$$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.