Physics: Principles with Applications (7th Edition)

Published by Pearson
ISBN 10: 0-32162-592-7
ISBN 13: 978-0-32162-592-2

Chapter 22 - Electromagnetic Waves - General Problems - Page 642: 50

Answer

a) $ 0.067 \;\rm V/m$ b) $7.076\rm\; km$

Work Step by Step

a) We know that the average energy density is given by $$u_{avg}=\frac{1}{2}\varepsilon_0E^2$$ We also know that $E_{\rm rms}=\dfrac{E}{\sqrt2}$; thus $E=\sqrt2 E_{\rm rms}$. $$u_{avg}=\frac{1}{2}\varepsilon_0(\sqrt2 E_{\rm rms})^2=\varepsilon_0 E_{\rm rms} ^2$$ Solving for $E_{\rm rms}$; $$ E_{\rm rms} =\sqrt{\dfrac{u_{avg}}{ \varepsilon_0} }$$ Plugging the known; $$ E_{\rm rms} =\sqrt{\dfrac{ 4\times10^{-14}}{ 8.85\times10^{-12}} }=\color{red}{\bf 0.067}\;\rm V/m$$ --------------------------------------------------------------------------- b) We can use the average intensity as a comparable value. We know that the average density of an electromagnetic wave is given by $$I_{avg}=\dfrac{P_{avg}}{A}=\dfrac{P_{avg}}{4\pi r^2}$$ We also know that the average density of an electromagnetic wave is given by $I_{avg}=\frac{1}{2}\varepsilon_0 c E_0^2$. Thus, $$ \frac{1}{2}\varepsilon_0 c E_0^2=\dfrac{P_{avg}}{4\pi r^2}$$ Recall that $E=\sqrt2 E_{\rm rms}$, as we found above. $$ \frac{1}{2}\varepsilon_0 c (\sqrt 2E_{\rm rms})^2=\dfrac{P_{avg}}{4\pi r^2}$$ $$ \varepsilon_0 c E_{\rm rms}^2=\dfrac{P_{avg}}{4\pi r^2}$$ Solving for $r$; $$ r =\sqrt{\dfrac{P_{avg}}{4\pi \varepsilon_0 c E_{\rm rms}^2}}$$ Plugging the known; $$ r =\sqrt{\dfrac{7500}{4\pi\cdot 8.85\times10^{-12}\cdot 3.0\times10^8\cdot 0.067^2}}=7076\;\rm m$$ $$ r =\color{red}{\bf 7.076}\;\rm km$$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.