Physics: Principles with Applications (7th Edition)

Published by Pearson
ISBN 10: 0-32162-592-7
ISBN 13: 978-0-32162-592-2

Chapter 19 - DC Circuits - Problems - Page 555: 57

Answer

a) $I_1=\frac{2E}{3R}$ and $I_2=I_3=\frac{E}{3R}$ b) $I_3=0A$ and $I_1=I_2=\frac{E}{2R}$ c) $V_C=\frac{1}{2}E$

Work Step by Step

The voltage of the capacitance is given by $E(1-e^{-t/RC})$ a) At $t=0$, $V_C=0$ so the capacitance is like a wire. $R_{eq}=\Big(\frac{1}{R}+\frac{1}{R}\Big)^{-1}+R=1.5R$ $I_1=\frac{2E}{3R}=I_2+I_3$ $V_2=V_3$ $I_2R=I_3R$ $I_2=I_3=\frac{E}{3R}$ b) At $t=\infty$, the capacitance is fully charged with a voltage of $E$. Therefore, there will be no potential difference across $R_3$ and $I_3=0A$ and $I_1=I_2=\frac{E}{2R}$ c) $V_C=V_{R2}=I_2R=\frac{1}{2}E$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.